精英家教网 > 高中数学 > 题目详情
5.已知向量$\overrightarrow a,\overrightarrow b$满足,且$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$且$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,则$\overrightarrow a•\overrightarrow b$=3.

分析 根据平面向量数量积的定义,写出运算过程即可.

解答 解:$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3$,且$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,
则$\overrightarrow a•\overrightarrow b$=|$\overrightarrow{a}$|×|$\overrightarrow{b}$|×cos$\frac{π}{3}$
=2×3×$\frac{1}{2}$
=3.
故答案为:3.

点评 本题考查了平面向量数量积的运算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.经过A(0,-1),B(2,3)的直线的斜率等于(  )
A.2B.-2C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若xlog32≥-1,则函数f(x)=4x-2x+1-3的最小值为(  )
A.-4B.-3C.$-\frac{32}{9}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某小卖部为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数y与当天气温(平均温度)x/°C的对比表:
 x 0 1 3 4
 y 140 136 129 125
(1)请在图a中画出上表数据的散点图;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(3)如果某天的气温是5°C,试根据(2)求出的线性回归方程预测这天大约可以卖出的热饮杯数.
参考公式:最小二乘法求线性回归方程系数公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-,{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.
参考数据:0×140+1×136+3×129+4×125=1023,(140+136+129+125)÷4=132.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.“x<2”是“-3<x<2”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数$f(x)=lnx-ax-\frac{1}{x}-1$.
(1)当a=1时,求曲线f(x)在x=1处的切线方程;
(2)当$a=\frac{3}{4}$时,求函数f(x)的单调区间;
(3)在(2)的条件下,设函数$g(x)={x^2}-2bx-\frac{5}{12}$,若对于?x1∈[1,2],?x2∈[0,1],使f(x1)≥g(x2)成立,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知随机变量ξ的分布列为(如表所示):设η=2ξ+1,则η的数学期望Eη的值是$\frac{2}{3}$.
ξ-101
P$\frac{1}{2}$$\frac{1}{6}$$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知数列{an}的前n项和为Sn,且满足an+Sn=2.
(1)求数列{an}的通项公式;
(2)令bn=n•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点M是抛物线x2=4y上的一动点,F为抛物线的焦点,A是圆C:(x-1)2+(y-4)2=1上一动点,则|MA|+|MF|的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案