精英家教网 > 高中数学 > 题目详情
在△ABC中,内角A,B,C的对边分别为a,b,c,若sin2B-sin2C=
3
sinCsinA,a=2
3
c,则B=(  )
A、30°B、60°
C、120°D、150°
考点:正弦定理,余弦定理
专题:三角函数的求值,解三角形
分析:已知等式利用正弦定理化简,将a=2
3
c代入表示出b,利用余弦定理表示出cosB,将表示出的b与a代入求出cosB的值,即可确定出B的度数.
解答: 解:将sin2B-sin2C=
3
sinCsinA,
利用正弦定理化简得:b2-c2=
3
ac,
把a=2
3
c代入得:b2-c2=6c2,即b=
7
c,
∴cosB=
a2+c2-b2
2ac
=
12c2+c2-7c2
4
3
c2
=
3
2

则B=30°.
故选:A.
点评:此题考查了正弦、余弦定理,以及特殊角的三角函数值,熟练掌握定理是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从某班50名学生的一次数学测试成绩进行调查,发现其成绩都在90到150之间,频率分布直方图如图所示.
(1)直方图中x的值为
 

(2)在这些学生中,成绩在[110,150)内的学生人数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

正方体ABCD-A1B1C1D1的8个顶点中任取4个连接构成的三棱锥中,满足任意一条棱都不与其表面垂直的三棱锥的个数(  )
A、22B、24C、26D、28

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2cos
πx
3
(x≤2000)
2x-2010(x>2000)
,则f(f(2014))=(  )
A、
3
B、-
3
C、1
D、-1

查看答案和解析>>

科目:高中数学 来源: 题型:

若x,y满足约束条件
3x-y≥2
x-2y≤-1
2x+y≤8
,则
x
y
的最小值为(  )
A、
1
2
B、
2
3
C、1
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义在R上的偶函数f(x)满足f(x+2)=f(x),且当x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|的解个数是(  )
A、9个B、2个
C、4 个D、6个

查看答案和解析>>

科目:高中数学 来源: 题型:

下列函数中既是奇函数,又在区间(0,+∞)上单调递减的函数是(  )
A、y=
1
2
+
1
2x+1
B、y=
1
2
-
1
2x+1
C、y=
1
2
+
1
2x-1
D、y=
1
2
-
1
2x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

一同学为研究函数f(x)=
1+x2
+
1+(1-x)2
(0≤x≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD和BEFC,点P是边BC上的一个动点,设CP=x,则AP+PF=f(x),请你参考这些信息,推知函数g(x)=4f(x)-9的零点的个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形
(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1
(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.

查看答案和解析>>

同步练习册答案