精英家教网 > 高中数学 > 题目详情
15.已知数列{an}为等差数列,{bn}为等比数列,且an>0,bn>0,记数列{an•bn}的前n项和为Sn,若a1=b1=1,Sn=(n-1)•3n+1(n∈N*),则数列{$\frac{{a}_{n}-25}{{b}_{n}}$}的最大项为第14项.

分析 设等差数列{an}的公差为d(d>0),等比数列{bn}的公比为q(q>0),由已知列式求得公差和公比,得到等差数列与等比数列的通项公式,代入$\frac{{a}_{n}-25}{{b}_{n}}$,化简整理,令cn=$\frac{{a}_{n}-25}{{b}_{n}}$,由$\left\{\begin{array}{l}{{c}_{n}≥{c}_{n-1}}\\{{c}_{n}≥{c}_{n+1}}\end{array}\right.$ 求得n值.

解答 解:设等差数列{an}的公差为d(d>0),等比数列{bn}的公比为q(q>0),
由Sn=(n-1)•3n+1,得
$\left\{\begin{array}{l}{{S}_{2}=1+(1+d)q=10}\\{{S}_{3}=1+(1+d)q+(1+2d){q}^{2}=55}\end{array}\right.$,
即$\left\{\begin{array}{l}{(1+d)q=9}\\{(1+2d){q}^{2}=45}\end{array}\right.$,解得d=2,q=3.
∴an=1+2(n-1)=2n-1,${b}_{n}={3}^{n-1}$.
∴$\frac{{a}_{n}-25}{{b}_{n}}$=$\frac{2n-26}{{3}^{n-1}}$,
令${c}_{n}=\frac{2n-26}{{3}^{n-1}}$,由$\left\{\begin{array}{l}{{c}_{n}≥{c}_{n-1}}\\{{c}_{n}≥{c}_{n+1}}\end{array}\right.$,
得$\left\{\begin{array}{l}{\frac{2n-26}{{3}^{n-1}}≥\frac{2n-28}{{3}^{n-2}}①}\\{\frac{2n-26}{{3}^{n-1}}≥\frac{2n-24}{{3}^{n}}②}\end{array}\right.$,
由①得$n≤\frac{29}{2}$,由②得n$≥\frac{27}{2}$.
∴n=14.
即数列{$\frac{{a}_{n}-25}{{b}_{n}}$}的最大项为第14项.
故答案为:14.

点评 本题是等差数列与等比数列的综合题,考查了等差数列与等比数列的通项公式,考查数列的函数特性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数p(x)=lnx-x+4,q(x)=$\frac{{a{e^x}}}{x}({a∈R})$.
(1)若函数y=p(x),y=q(x)的图象有平行于坐标轴的公切线,求a的值;
(2)若关于x的不等式p(x)-4<q(x)的解集中有且只有两个整数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率$\frac{\sqrt{2}}{2}$,且P(0,1)是椭圆C上的点,F是椭圆的右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F且不与坐标轴平行的直线l与椭圆C交于A,B两点,线段AB的中点为M,O为坐标原点,直线OM的斜率kOM=-$\frac{1}{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)=x2+ax+2b在区间(0,1)和(1,2)内各有一个零点,则$\frac{a+b-3}{a-1}$的取值范围是(  )
A.($\frac{1}{4}$,1)B.($\frac{3}{4}$,$\frac{3}{2}$)C.($\frac{1}{4}$,$\frac{5}{4}$)D.($\frac{5}{4}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥S-ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(1)求证:SA⊥BD;
(2)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知F1,F2为椭圆ax2+y2=4a(0<a<1)的两个焦点,A(0,2),点P为椭圆上任意一点,则|PA|-|PF2|的最小值是(  )
A.aB.2aC.2$\sqrt{1-a}$-4D.2$\sqrt{2-a}$-4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.关于随机对照试验的说法,错误的是(  )
A.试验组的对象必须是随机选取的
B.必须有试验组和对照组
C.对照组中的对象不必使用安慰剂
D.在有些随机对照试验中,为了得到更真实的结果,有时还需要使用安慰剂

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过圆x2+y2=25内一点P($\sqrt{15}$,0)作倾斜角互补的直线AC和BD,分别与圆交于A、C和B、D,则四边形ABCD面积的最大值为(  )
A.40$\sqrt{3}$B.$\frac{80\sqrt{3}}{3}$C.40$\sqrt{2}$D.$\frac{80\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.用数学归纳法证明n2<2n(n为自然数且n≥5)时,第一步应(  )
A.证明n=0时,n2<2nB.证明n=5时,n2<2nC.证明n=1时,n2<2nD.证明n=6时,n2<2n

查看答案和解析>>

同步练习册答案