6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊ$\frac{\sqrt{2}}{2}$£¬ÇÒP£¨0£¬1£©ÊÇÍÖÔ²CÉϵĵ㣬FÊÇÍÖÔ²µÄÓÒ½¹µã£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©¹ýµãFÇÒ²»Óë×ø±êÖáÆ½ÐеÄÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Ïß¶ÎABµÄÖеãΪM£¬OÎª×ø±êÔ­µã£¬Ö±ÏßOMµÄбÂÊkOM=-$\frac{1}{2}$£¬ÇóÖ±ÏßlµÄ·½³Ì£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄ½¹µãÔÚxÖáÉÏ£¬Ôòb=1£¬ÀûÓÃÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬¼´¿ÉÇóµÃaµÄÖµ£¬¼´¿ÉÇóµÃÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlµÄ·½³Ì£¬´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Öеã×ø±ê¹«Ê½£¬ÇóµÃMµã×ø±ê£¬ÀûÓÃÖ±ÏßµÄбÂʹ«Ê½£¬¼´¿ÉÇóµÃkµÄÖµ£¬ÇóµÃÖ±ÏßlµÄ·½³Ì£®

½â´ð ½â£º£¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$c£¬b2=a2-c2=c2£¬
ÓÉÍÖÔ²µÄ½¹µãÔÚxÖáÉÏ£¬ÓÉP£¨0£¬1£©ÊÇÍÖÔ²ÉÏÒ»µã£¬
Ôòb=1£¬c2=1£¬a2=2£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖªF£¨1£¬0£©£¬ÉèÖ±ÏßABµÄ·½³Ì£ºy=k£¨x-1£©£¬£¨k¡Ù0£©£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬M£¨x0£¬y0£©£¬
$\left\{\begin{array}{l}{y=k£¨x-1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+2k2£©x2-4k2x+2k2-2=0£¬
x1+x2=$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬
Ôòy1+y2=k£¨x1-1£©+k£¨x2-1£©=-$\frac{2k}{1+2{k}^{2}}$£¬x0=$\frac{{x}_{1}+{x}_{2}}{2}$=$\frac{2{k}^{2}}{1+2{k}^{2}}$£¬y0=$\frac{{y}_{1}+{y}_{2}}{2}$=-$\frac{k}{1+2{k}^{2}}$£¬
ÔòM£¨$\frac{2{k}^{2}}{1+2{k}^{2}}$£¬-$\frac{k}{1+2{k}^{2}}$£©£¬
¡àÖ±ÏßOMµÄбÂÊkOM=-$\frac{{y}_{0}}{{x}_{0}}$=-$\frac{1}{2k}$=-$\frac{1}{2}$£¬½âµÃ£ºk=1£¬
¡àÖ±ÏßlµÄ·½³Ì£ºx-y-1=0£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ±ê×¼·½³Ì¼°¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬¿¼²éΤ´ï¶¨Àí£¬Öеã×ø±ê¹«Ê½µÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÔ²C£º£¨x-1£©2+y2=16£¬F£¨-1£¬0£©£¬MÊÇÔ²CÉϵÄÒ»¸ö¶¯µã£¬Ïß¶ÎMFµÄ´¹Ö±Æ½·ÖÏßÓëÏß¶ÎMCÏཻÓÚµãP£®
£¨¢ñ£©ÇóµãPµÄ¹ì¼£·½³Ì£»
£¨¢ò£©¼ÇµãPµÄ¹ì¼£ÎªC1£¬A¡¢BÊÇÖ±Ïßx=-2ÉϵÄÁ½µã£¬Âú×ãAF¡ÍBF£¬ÇúÏßC1Óë¹ýA£¬BµÄÁ½ÌõÇÐÏߣ¨ÒìÓÚx=-2£©½»ÓÚµãQ£¬ÇóËıßÐÎAQBFÃæ»ýµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¡¶¾ÅÕÂËãÊõ¡·ÊÇÖйú¹Å´úµÚÒ»²¿ÊýÑ§×¨Öø£¬ÊéÖÐÓйØÓÚ¡°Çµ¶Â¡±µÄ¼ÇÔØ£¬¡°Çµ¶Â¡±¼´µ×ÃæÊÇÖ±½ÇÈý½ÇÐεÄÖ±ÈýÀâÖù£¬ÒÑ֪ij¡°Çµ¶Â¡±±»Ò»¸öÆ½Ãæ½ØÈ¥Ò»²¿·Öºó£¬Ê£Ï²¿·ÖµÄÈýÊÓͼÈçͼËùʾ£¬Ôòʣϲ¿·ÖµÄÌå»ýÊÇ£¨¡¡¡¡£©
A£®50B£®75C£®25.5D£®37.5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Éèz=$\frac{10i}{3+i}$£¬Ôò$\overline{z}$=£¨¡¡¡¡£©
A£®-1+3iB£®-1-3iC£®1+3iD£®1-3i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÔÏÂÊÇijÑù±¾Êý¾Ý£¬Ôò¸ÃÑù±¾µÄÖÐλÊý¡¢¼«²î·Ö±ðÊÇ£¨¡¡¡¡£©
Êý¾Ý31£¬12£¬22£¬15£¬20£¬45£¬47£¬32£¬34£¬23£¬28 
A£®23¡¢32B£®34¡¢35C£®28¡¢32D£®28¡¢35

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬¶¯Ô²¾­¹ýµãM£¨0£¬t-2£©£¬N£¨0£¬t+2£©£¬P£¨-2£¬0£©£®ÆäÖÐt¡ÊR£®
£¨1£©Çó¶¯Ô²Ô²ÐÄEµÄ¹ì¼£·½³Ì£»
£¨2£©¹ýµãP×÷Ö±Ïßl½»¹ì¼£EÓÚ²»Í¬µÄÁ½µãA£¬B£¬Ö±ÏßOAÓëÖ±ÏßOB·Ö±ð½»Ö±Ïßx=2ÓÚÁ½µãC£¬D£¬¼Ç¡÷ACDÓë¡÷BCDµÄÃæ»ý·Ö±ðΪS1£¬S2£®ÇóS1+S2µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ó÷´Ö¤·¨Ö¤Ã÷¡°a¡¢b¡ÊN*£¬Èç¹ûa¡¢bÄܱ»2017Õû³ý£¬ÄÇôa¡¢bÖÐÖÁÉÙÓÐÒ»¸öÄܱ»2017Õû³ý¡±Ê±£¬¼ÙÉèµÄÄÚÈÝÊÇ£¨¡¡¡¡£©
A£®a²»Äܱ»2017Õû³ýB£®b²»Äܱ»2017Õû³ý
C£®a¡¢b¶¼²»Äܱ»2017Õû³ýD£®a¡¢bÖÐÖÁ¶àÓÐÒ»¸öÄܱ»2017Õû³ý

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÒÑÖªÊýÁÐ{an}ΪµÈ²îÊýÁУ¬{bn}ΪµÈ±ÈÊýÁУ¬ÇÒan£¾0£¬bn£¾0£¬¼ÇÊýÁÐ{an•bn}µÄǰnÏîºÍΪSn£¬Èôa1=b1=1£¬Sn=£¨n-1£©•3n+1£¨n¡ÊN*£©£¬ÔòÊýÁÐ{$\frac{{a}_{n}-25}{{b}_{n}}$}µÄ×î´óÏîΪµÚ14Ï

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®${£¨{x^2}+\frac{1}{x}+1£©^6}$µÄÕ¹¿ªÊ½ÖÐËùÓÐÏîµÄϵÊýÖ®ºÍΪ£¨¡¡¡¡£©
A£®81B£®243C£®729D£®2187

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸