精英家教网 > 高中数学 > 题目详情
1.以下是某样本数据,则该样本的中位数、极差分别是(  )
数据31,12,22,15,20,45,47,32,34,23,28 
A.23、32B.34、35C.28、32D.28、35

分析 将数据从小到大按顺序排成一列,结合中位线和极差的定义进行求解即可.

解答 解:将数据从小到大按顺序排成一列为12,15,20,22,23,28,31,32,34,45,47,共11个数据,
则中位数为第6个数28,最大值为47,最小值为12,则极差47-12=35,
故选:D.

点评 本题主要考查中位线和极差的计算,根据条件将数据从小到大进行排列是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=|2x-1|+|x+1|.
(1)求函数f(x)的值域M;
(2)若a∈M,试比较|a-1|+|a+1|,$\frac{3}{2a}$,$\frac{7}{2}-2a$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=(2x-1)ex,a=f(1),b=f(-$\sqrt{2}$),c=f(-ln2),d=f(-$\frac{1}{2}$),则(  )
A.a>b>c>dB.b>a>c>dC.d>a>b>cD.a>d>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,F1、F2是椭圆C1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若AF1⊥BF1,且∠AF1O=$\frac{π}{3}$,则C1与C2的离心率之和为(  )
A.2$\sqrt{3}$B.4C.2$\sqrt{5}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在△ABC中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$≥$\frac{9}{π}$成立;在四边形ABCD中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$≥$\frac{16}{2π}$成成立;在五边形ABCDE中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$+$\frac{1}{E}$≥$\frac{25}{3π}$成立.猜想在n边形中,不等式$\frac{1}{A_1}+\frac{1}{A_2}+\frac{1}{A_3}+…+\frac{1}{A_n}≥\frac{n^2}{(n-2)π}$成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率$\frac{\sqrt{2}}{2}$,且P(0,1)是椭圆C上的点,F是椭圆的右焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点F且不与坐标轴平行的直线l与椭圆C交于A,B两点,线段AB的中点为M,O为坐标原点,直线OM的斜率kOM=-$\frac{1}{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某三棱柱的三视图如图所示,该三棱柱的表面积为3+2$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四棱锥S-ABCD中,△ABD是正三角形,CB=CD,SC⊥BD.
(1)求证:SA⊥BD;
(2)若∠BCD=120°,M为棱SA的中点,求证:DM∥平面SBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数f(x)=(x-2)(ax+b)为偶函数,且在(0,+∞)单调递增,则f(2-x)>0的解集为(  )
A.{x|-2<x<2}B.{x|x>2,或x<-2}C.{x|0<x<4}D.{x|x>4,或x<0}

查看答案和解析>>

同步练习册答案