精英家教网 > 高中数学 > 题目详情

已知在四棱锥P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分别是线段AB、BC的中点.

(1)证明:PF⊥FD;

(2)判断并说明PA上是否存在点G,使得EG∥平面PFD;

(3)若PB与平面ABCD所成的角为45°,求二面角A-PD-F的余弦值.

 

(1)详见解析;(2)详见解析;(3).

【解析】

试题分析:解法一(向量法)

(I)建立如图所示的空间直角坐标系A-xyz,分别求出直线PF与FD的平行向量,然后根据两个向量的数量积为0,得到PF⊥FD;

(2)求出平面PFD的法向量(含参数t),及EG的方向向量,进而根据线面平行,则两个垂直数量积为0,构造方程求出t值,得到G点位置;

(3)由是平面PAD的法向量,根据PB与平面ABCD所成的角为45°,求出平面PFD的法向量,代入向量夹角公式,可得答案.

解法二(几何法)

(I)连接AF,由勾股定理可得DF⊥AF,由PA⊥平面ABCD,由线面垂直性质定理可得DF⊥PA,再由线面垂直的判定定理得到DF⊥平面PAF,再由线面垂直的性质定理得到PF⊥FD;

(2)过点E作EH∥FD交AD于点H,则EH∥平面PFD,且有AH=AD,再过点H作HG∥DP交PA于点G,则HG∥平面PFD且AG=AP,由面面平行的判定定理可得平面GEH∥平面PFD,进而由面面平行的性质得到EG∥平面PFD.从而确定G点位置;

(Ⅲ)由PA⊥平面ABCD,可得∠PBA是PB与平面ABCD所成的角,即∠PBA=45°,取AD的中点M,则FM⊥AD,FM⊥平面PAD,在平面PAD中,过M作MN⊥PD于N,连接FN,则PD⊥平面FMN,则∠MNF即为二面角A-PD-F的平面角,解三角形MNF可得答案..

试题解析:(1)证明:∵PA⊥平面ABCD,∠BAD=90°,AB=1,AD=2,建立如图所示的空间直角坐标系A-xyz,则

A(0,0,0),B(1,0,0),F(1,1,0),D(0,2,0).

不妨令P(0,0,t),∵=(1,1,-t),=(1,-1,0),

=1×1+1×(-1)+(-t)×0=0,

即PF⊥FD.

(2)【解析】
设平面PFD的法向量为n=(x,y,z),

令z=1,解得:x=y=.

∴n=.

设G点坐标为(0,0,m),E,则

要使EG∥平面PFD,只需·n=0,即,得m=,从而满足AG=AP的点G即为所求.

(3)【解析】
∵AB⊥平面PAD,∴是平面PAD的法向量,易得=(1,0,0),又∵PA⊥平面ABCD,∴∠PBA是PB与平面ABCD所成的角,得∠PBA=45°,PA=1,平面PFD的法向量为n=.

.

故所求二面角A-PD-F的余弦值为.

考点:1.用空间向量求平面间的夹角;2.空间中直线与直线之间的位置关系;3.直线与平面平行的判定.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015届浙江省高二下学期期中文科数学试卷(解析版) 题型:选择题

已知命题p:若x>0且y>0,则xy>0,则p的否命题是(  )

A.若x>0且y>0,则xy≤0

B.若x≤0且y≤0,则xy≤0

C.若x,y至少有一个不大于0,则xy<0

D.若x,y至少有一个小于或等于0,则xy≤0

 

查看答案和解析>>

科目:高中数学 来源:2015届浙江省高二下学期期中文科数学试卷(解析版) 题型:选择题

已知命题:函数内单调递减;:曲线轴没有交点.如果“”是真命题,“”是假命题,则实数的取值范围是( )

A. B.

C. D.

 

查看答案和解析>>

科目:高中数学 来源:2015届浙江省高二下学期期末考试文科数学试卷(解析版) 题型:填空题

若变量满足约束条件,则的最大值为_________.

 

查看答案和解析>>

科目:高中数学 来源:2015届浙江省高二下学期期末考试文科数学试卷(解析版) 题型:选择题

是首项为,公差为的等差数列,为其前n项和,若成等比数列,则=( )

A.2 B.-2 C. D .

 

查看答案和解析>>

科目:高中数学 来源:2015届浙江省高二下学期第一次统练理科数学试卷(解析版) 题型:填空题

已知圆,圆内有定点,圆周上有两个动点,使,则矩形的顶点的轨迹方程为.

 

查看答案和解析>>

科目:高中数学 来源:2015届浙江省高二下学期第一次统练理科数学试卷(解析版) 题型:选择题

对于曲线=1,给出下面四个命题:

(1)曲线不可能表示椭圆;

(2)若曲线表示焦点在x轴上的椭圆,则1<

(3)若曲线表示双曲线,则<1或>4;

(4)当1<<4时曲线表示椭圆,其中正确的是 ( )

A .(2)(3) B. (1)(3) C. (2)(4) D.(3)(4)

 

查看答案和解析>>

科目:高中数学 来源:2015届浙江省高二下学期第一次统练文科数学试卷(解析版) 题型:填空题

是抛物线上一动点,则点到点的距离与到直线的距离和的最小值是 .

 

查看答案和解析>>

科目:高中数学 来源:2015届浙江省高三上学期第一次统练文科数学试卷(解析版) 题型:填空题

数列是公比为的等比数列,是首项为12的等差数列.现已知a9>b9

且a10>b10,则以下结论中一定成立的是 .(请填写所有正确选项的序号)

; ② ; ③ ; ④

 

查看答案和解析>>

同步练习册答案