9£®ÒÑÖªÊýÁÐ{an}£¬{bn}ÖУ¬a1=1£¬bn=£¨1-$\frac{{{a}_{n}}^{2}}{{{a}_{n+1}}^{2}}$£©•$\frac{1}{{a}_{n+1}}$£¬n¡ÊN*£¬ÊýÁÐ{bn}µÄǰnÏîºÍSn£®
£¨1£©Èôan=2n-1£¬ÇóSn£»
£¨2£©ÊÇ·ñ´æÔڵȱÈÊýÁÐ{an}ʹbn+2=Sn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öËùÓÐÂú×ãÌõ¼þµÄÊýÁÐ{an}µÄͨÏʽ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÒÀÌâÒ⣬¿ÉÇóµÃbn=£¨1-$\frac{{{a}_{n}}^{2}}{{{a}_{n+1}}^{2}}$£©•$\frac{1}{{a}_{n+1}}$=$\frac{3}{{2}^{n+2}}$£¬ÀûÓõȱÈÊýÁеÄÇóºÍ¹«Ê½¿ÉµÃÊýÁÐ{bn}µÄǰnÏîºÍSn£»
£¨2£©Éè´æÔÚ¸ö¹«±ÈΪqµÄµÈ±ÈÊýÁÐ{an}ʹbn+2=Sn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬ÀûÓÃn=1ʱ£¬b3=b1¿ÉÇóµÃq=¡À1£¬¼ìÑé¼´¿ÉµÃµ½´ð°¸£®

½â´ð ½â£º£¨1£©¡ßa1=1£¬an=2n-1£¬
¡à$\frac{1}{{a}_{n+1}}$=$\frac{1}{{2}^{n}}$£¬$\frac{{a}_{n}}{{a}_{n+1}}$=$\frac{{2}^{n-1}}{{2}^{£¨n-1£©+1}}$=$\frac{1}{2}$£¬
¡à$\frac{{{a}_{n}}^{2}}{{{a}_{n+1}}^{2}}$=$\frac{1}{4}$£¬
¡àbn=£¨1-$\frac{{{a}_{n}}^{2}}{{{a}_{n+1}}^{2}}$£©•$\frac{1}{{a}_{n+1}}$=£¨1-$\frac{1}{4}$£©•$\frac{1}{{2}^{n}}$=$\frac{3}{{2}^{n+2}}$£¬
ÏÔÈ»£¬ÊýÁÐ{bn}ΪÊ×ÏîΪ$\frac{3}{8}$£¬¹«±ÈΪ$\frac{1}{2}$µÄµÈ±ÈÊýÁУ¬
¡àSn=b1+b2+¡­+bn=$\frac{\frac{3}{8}[1-£¨\frac{1}{2}£©^{n}]}{1-\frac{1}{2}}$=$\frac{3}{4}$-$\frac{3}{{2}^{n+2}}$£¨n¡ÊN*£©£®
£¨2£©Éè´æÔÚ¸ö¹«±ÈΪqµÄµÈ±ÈÊýÁÐ{an}ʹbn+2=Sn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
Ôòn=1ʱ£¬b1+2=S1=b1£¬¼´b3=£¨1-$\frac{1}{{q}^{2}}$£©•$\frac{1}{{a}_{4}}$=£¨1-$\frac{1}{{q}^{2}}$£©•$\frac{1}{{a}_{2}}$£¬¼´£¨1-q2£©£¨$\frac{1}{{q}^{3}}$-$\frac{1}{q}$£©=0£¬
½âµÃ£ºq=¡À1£¬
¾­¼ìÑ飬µ±q=¡À1ʱ£¬bn=0£¬Âú×ãbn+2=Sn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¬
¹Ê´æÔÚ¹«±ÈΪ¡À1µÄµÈ±ÈÊýÁÐ{an}£¬an=1»ò£¨-1£©n-1£¬Ê¹bn+2=Sn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£®

µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆ¹ØÏµÊ½µÄÓ¦Ó㬿¼²éµÈ±ÈÊýÁеÄÐÔÖʼ°ÇóºÍ¹«Ê½µÄÓ¦Ó㬿¼²éÍÆÀíÓëÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªÌõ¼þp£º|x+1|£¾2£¬Ìõ¼þq£º5x-6£¾x2£¬Ôò©VpÊÇ©VqµÄ£¨¡¡¡¡£©
A£®³äÒªÌõ¼þB£®³ä·Öµ«²»±ØÒªÌõ¼þ
C£®±ØÒªµ«²»³ä·ÖÌõ¼þD£®¼È·Ç³ä·ÖÒ²·Ç±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®º¯Êýf£¨x£©ÊÇRÉÏµÄÆæº¯Êý£¬ÇÒµ±x£¾0ʱ£¬f£¨x£©µÄ½âÎöʽΪ$f£¨x£©=\frac{{{2^x}-1}}{{{2^x}+1}}$
£¨1£©ÊÔд³öf£¨x£©ÔÚRÉϵĺ¯Êý±í´ïʽ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚRÉϵÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®É輯ºÏP={£¨x£¬y£©|£¨x+a£©2+£¨y+2a£©2}=4£¬Q={£¨x£¬y£©|x2+y2=1}£¬ÈôP¡ÉQ=∅£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ{a|a£¼-$\frac{3\sqrt{5}}{5}$»òa£¾$\frac{3\sqrt{5}}{5}$»ò-$\frac{\sqrt{5}}{5}$£¼a£¼$\frac{\sqrt{5}}{5}$}£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{1-{a}^{2}}$=1£¬µãPµ½Á½¶¨µãA£¨-1£¬0£©¡¢B£¨1£¬0£©µÄ¾àÀëÖ®±ÈΪ$\sqrt{2}$£¬µãBµ½Ö±ÏßPAµÄ¾àÀëΪ1£®
£¨1£©ÇóÖ±ÏßPBµÄ·½³Ì£®
£¨2£©ÇóÖ¤£ºÖ±ÏßPBÓëÍÖÔ²CÏàÇУ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬Ôò¸´Êý$\frac{1}{1+i}$Ëù¶ÔÓ¦µÄµãλÓÚ¸´Æ½ÃæÄڵĵÚËÄÏóÏÞ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªµãP£¨1£¬1£©µ½Ö±Ïßl£ºy=3x+b£¨b£¾0£©µÄ¾àÀëΪ$\frac{{2\sqrt{10}}}{5}$£®ÊýÁÐ{an}µÄÊ×Ïîa1=1£¬ÇÒµãÁУ¨an£¬an+1£©n¡ÊN*¾ùÔÚÖ±ÏßlÉÏ£®
£¨¢ñ£©ÇóbµÄÖµ£»
£¨¢ò£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨¢ó£©ÇóÊýÁÐ{nan}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Çóº¯Êýf£¨x£©=$\frac{x}{{x}^{2}+3}$£¨x£¾0£©µÄ×î´óÖµÒÔ¼°È¡µÃ×î´óֵʱxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®¹Û²ìÏÂÁÐÉ¢µãͼ£¬Ôò¢ÙÕýÏà¹Ø£»¢Ú¸ºÏà¹Ø£»¢Û²»Ïà¹Ø£®ËüÃǵÄÅÅÁÐ˳ÐòÓëͼÐζÔӦ˳ÐòÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a£¬b£¬cB£®b£¬a£¬cC£®a£¬c£¬bD£®c£¬a£¬b

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸