分析 集合P表示圆心为(-a,-2a),半径为2的圆上的点集,集合Q表示圆心为(0,0),半径为1的圆上的点集,根据P与Q交集为空集得到两圆相离或内含,确定出a的范围即可.
解答 解:∵P={(x,y)|(x+a)2+(y+2a)2=4},Q={(x,y)|x2+y2=1},且P∩Q=∅,
∴圆心为(-a,-2a),半径为2的圆与圆心为(0,0),半径为1的圆相离或内含,
∴(-a)2+(-2a)2>32,即a2>$\frac{9}{5}$或(-a)2+(-2a)2<1,即a2<$\frac{1}{5}$,
解得:a<-$\frac{3\sqrt{5}}{5}$或a>$\frac{3\sqrt{5}}{5}$;-$\frac{\sqrt{5}}{5}$<a<$\frac{\sqrt{5}}{5}$,
则实数a的范围为{a|a<-$\frac{3\sqrt{5}}{5}$或a>$\frac{3\sqrt{5}}{5}$或-$\frac{\sqrt{5}}{5}$<a<$\frac{\sqrt{5}}{5}$},
故答案为:{a|a<-$\frac{3\sqrt{5}}{5}$或a>$\frac{3\sqrt{5}}{5}$或-$\frac{\sqrt{5}}{5}$<a<$\frac{\sqrt{5}}{5}$}.
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{41}$+1和$\sqrt{41}$-1 | B. | 3和1 | C. | 5$\sqrt{2}$和$\sqrt{34}$ | D. | $\sqrt{39}$和3 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a>b,则$\sqrt{a}$>$\sqrt{b}$ | B. | 若|a|>b,则a2>b2 | C. | 若a>b,则a2>b2 | D. | 若a>|b|,则a2>b2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com