【题目】选修4-4:坐标系与参数方程
在直角坐标系中,曲线的参数方程是(为参数)以原点为极点, 轴正半轴为极轴,并取与直角坐标系相同的单位长度,建立极坐标系,曲线的极坐标方程是.
(1)求曲线, 的直角坐标方程;
(2)若、分别是曲线和上的任意点,求的最小值.
科目:高中数学 来源: 题型:
【题目】某种蔬菜从1月1日起开始上市,通过市场调查,得到该蔬菜种植成本(单位:元/)与上市时间(单位:10天)的数据如下表:
时间 | 5 | 11 | 25 |
种植成本 | 15 | 10.8 | 15 |
(1)根据上表数据,从下列函数:,,,中(其中),选取一个合适的函数模型描述该蔬菜种植成本与上市时间的变化关系;
(2)利用你选取的函数模型,求该蔬菜种植成本最低时的上市时间及最低种植成本.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,分别是椭圆的左、右焦点.
(1)若点是第一象限内椭圆上的一点, ,求点的坐标;
(2)设过定点的直线与椭圆交于不同的两点,且为锐角(其中为坐标原点),求直线的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知{xn}是各项均为正数的等比数列,且x1+x2=3,x3-x2=2.
(1)求数列{xn}的通项公式;
(2)如图,在平面直角坐标系xOy中,依次连接点P1(x1,1),P(x2,2),…,Pn+1(xn+1,n+1)得到折线P1P2…Pn+1,求由该折线与直线y=0,x=x1,x=xn+1所围成的区域的面积Tn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市每年春节前后,由于大量的烟花炮竹的燃放,空气污染较为严重.该市环保研究所对近年春节前后每天的空气污染情况调查研究后发现,每天空气污染的指数.f(t),随时刻t(时)变化的规律满足表达式,其中a为空气治理调节参数,且a∈(0,1).
(1)令,求x的取值范围;
(2)若规定每天中f(t)的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过5,试求调节参数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等比数列的公比为,其前项和为,前项之积为,并且满足条件:,,,下列结论中正确的是( )
A. B.
C. 是数列中的最大值 D. 数列无最小值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com