分析 利用反证法,结合数列的递推关系进行证明即可.
解答 证明 (用反证法) 假设an≥3,(n≥2),
则由已知得an+1=f(n)=$\frac{{{a}_{n}}^{2}}{2{a}_{n}-2}$,
∴当n≥2时,$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n}}{2{a}_{n}-2}$=$\frac{1}{2}$•(1+$\frac{1}{{a}_{n}-1}$)≤$\frac{1}{2}$(1+$\frac{1}{2}$)=$\frac{3}{4}$<1,(∵an-1≥3-1),
又易证an>0,∴当n≥2时,an+1<an,
∴当n>2时,an+1<an<…<a2;
而当n=2时,a2=$\frac{{{a}_{1}}^{2}}{2{a}_{1}-2}$=$\frac{16}{8-2}$=$\frac{8}{3}$<3,
∴当n≥2时,an<3;
这与假设矛盾,故假设不成立,
∴当n≥2时,恒有an<3成立.
点评 本题主要考查与数列有关的恒成立问题,利用反证法,结合数列的递推关系是解决本题的关键.考查学生的运算和推理能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 或-2 | B. | -2 或-1 | C. | 1或-2 | D. | 0或2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=1,f(x)=x0 | B. | f(x)=|x|,f(t)=$\sqrt{t^2}$ | ||
| C. | f(x)=$\frac{x^2-1}{x-1}$,g(x)=x+1 | D. | f(x)=$\sqrt{x+1}$•$\sqrt{x-1}$,g(x)=$\sqrt{x^2-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com