精英家教网 > 高中数学 > 题目详情
已知f(x)=log
1
2
(x2-ax+3a)在区间(2,+∞)上是减函数,则实数a的取值范围是(  )
A、(-∞,4]
B、(-∞,4)
C、(-4,4]
D、[-4,4]
考点:对数函数的单调性与特殊点
专题:函数的性质及应用
分析:令t=x2-ax+3a,则由题意可得函数t在区间(2,+∞)上是增函数,且t>0,故有 
a
2
≤2
t(2)=4+a≥0
,由此求得a的范围.
解答: 解:令t=x2-ax+3a,则由题意可得函数t在区间(2,+∞)上是增函数,且t>0,
a
2
≤2
t(2)=4+a≥0
,求得-4≤a≤4,
故选:D.
点评:本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

给定函数①y=x2,②y=(
1
2
x+1,③y=|x2-2x|,④y=x+
1
x
,其中在区间(0,1)上单调递减的函数序号是(  )
A、①③B、②③C、②④D、①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x2-4x+3,x<1
(log
1
2
x)+1,x≥1
,若f(3-a2)<f(a2+1)成立,则a的取值范围是(  )
A、-2<a<2
B、a<-2或a>2
C、-1<a<1
D、a<-1或a>1

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意的两个实数对(a,b)和(c,d),规定当且仅当a=c,b=d时(a,b)=(c,d);现定义两种运算,运算“?”为:(a,b)?(c,d)=(ac-bd,bc+ad);运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d).设p、q∈R.若(1,2)⊕(p,q)=(5,0).则(1,2)?(p,q)=(  )
A、(4,0)
B、(8,6)
C、(0,6)
D、(0,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+
a2
4
(a∈R),若关于x的不等式f(x)<c的解集为(m,m+6),则实数c的值为(  )
A、6B、7C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数据x1,x2,…,xn的平均数为
.
x
=8,则数据3x1-2,3x2-2,…,3xn-2的平均数为(  )
A、6B、8C、22D、24

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=3x-x3极大值为(  )
A、-1B、1C、-2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=(
3
4
x的图象可能是(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=2an-2n+1+2(n为正整数).
(1)记cn=
an
2n
,证明数列{cn}为等差数列;  
(2)求数列{an}的通项公式;
(3)令bn=log2a1+log2
a2
2
+…+log2
an
n
,求数列{
1
bn
}的前n项和Tn

查看答案和解析>>

同步练习册答案