精英家教网 > 高中数学 > 题目详情
4.已知α是锐角,且cos(α+$\frac{π}{5}$)=$\frac{1}{3}$,则cos(2α+$\frac{π}{15}$)=(  )
A.$\frac{4\sqrt{6}-7}{18}$B.$\frac{7-4\sqrt{6}}{18}$C.$\frac{\sqrt{3}+\sqrt{2}}{6}$D.$\frac{\sqrt{3}-\sqrt{2}}{6}$

分析 由题意可得sin(α+$\frac{π}{5}$),进而由二倍角公式可得sin(2α+$\frac{2π}{5}$)和cos(2α+$\frac{2π}{5}$),代入cos(2α+$\frac{π}{15}$)=cos[(2α+$\frac{2π}{5}$)-$\frac{π}{3}$]=$\frac{1}{2}$cos(2α+$\frac{π}{15}$)+$\frac{\sqrt{3}}{2}$sin(2α+$\frac{π}{15}$)化简计算可得答案.

解答 解:∵α是锐角,且cos(α+$\frac{π}{5}$)=$\frac{1}{3}$,
∴sin(α+$\frac{π}{5}$)=$\sqrt{1-co{s}^{2}(α+\frac{π}{5})}$=$\frac{2\sqrt{2}}{3}$,
∴sin(2α+$\frac{2π}{5}$)=2×$\frac{1}{3}×\frac{2\sqrt{2}}{3}$=$\frac{4\sqrt{2}}{9}$,
cos(2α+$\frac{2π}{5}$)=($\frac{1}{3}$)2-($\frac{2\sqrt{2}}{3}$)2=-$\frac{7}{9}$,
∴cos(2α+$\frac{π}{15}$)=cos[(2α+$\frac{2π}{5}$)-$\frac{π}{3}$]
=$\frac{1}{2}$cos(2α+$\frac{π}{15}$)+$\frac{\sqrt{3}}{2}$sin(2α+$\frac{π}{15}$)
=$\frac{1}{2}$×(-$\frac{7}{9}$)+$\frac{\sqrt{3}}{2}$×$\frac{4\sqrt{2}}{9}$=$\frac{4\sqrt{6}-7}{18}$.
故选:A.

点评 本题考查两角和与差的三角函数公式,涉及同角三角函数基本关系和二倍角公式,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.如图所示的阴影部分是由x轴,直线x=1及曲线y=ex-1围成,现向矩形区域OABC内随机投掷一点,则该点落在阴影部分的概率是(  )
A.$\frac{1}{e}$B.$\frac{1}{e-1}$C.$1-\frac{1}{e}$D.$\frac{e-2}{e-1}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知A(-2,3,4),在y轴上求一点B,使|AB|=3$\sqrt{5}$,则点B的坐标为(0,8,0)或(0,2,0) .

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设a=(lg2)2+(lg5)2+lg4lg5+2log510+log50.25,b=(log2125+log85)•log52,试比较a与b的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在等差数列{an}中,已知S15=90,则a8=6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinωx-cosωx(ω>0),x∈R,若函数f(x)在(-ω,ω)上是增函数,且图象关于直线x=-ω对称,则ω=(  )
A.2B.πC.$\frac{\sqrt{π}}{2}$D.$\frac{\sqrt{3π}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$sin(\frac{π}{6}-α)=\frac{4}{5},cos(α+\frac{π}{3})$的值是(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若函数y=ax-b+1的图象恒过定点(1,2),则b=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某小说网站为了了解读者群对网络小说的阅读情况,随机抽取了100名读者进行调查,具体情况如表:
 日均阅读小说时间(分钟) (0,30](30,60] (60,90](90,120] (120,150](150,+∞) 
 人数15  2124  28 4
将日均阅读小说高于1.5个小时的读者称为“小说迷”.
(1)根据已知条件完成下面的2×2列联表,根据此资料,你是否有90%的把握认为“小说迷”与性别有关?
  非小说迷小说迷 合计
 男  1548 
 女   
 合计   
(2)将上述调查所得到的频率视为概率,从该网站的读者(数量很大)中抽取3人,记被抽取的3人中的“小说迷”人数为X,若每次抽取结果是相互独立的,求X的分布列和期望.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
 P(K2≥k0 0.500.25  0.10 0.050.025  0.0100.005  0.001
 k0 0.455 1.3232.706 3.841  5.0246.635  7.87910.828 

查看答案和解析>>

同步练习册答案