13£®ÒÑÖªÍÖÔ²CÓëË«ÇúÏßy2-x2=1Óй²Í¬½¹µã£¬ÇÒÀëÐÄÂÊΪ$\frac{\sqrt{6}}{3}$£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÈôAΪÍÖÔ²CµÄ϶¥µã£¬M¡¢NΪÍÖÔ²CÉÏÒìÓÚAµÄÁ½µã£¬Ö±ÏßAMÓëANµÄбÂÊÖ®»ýΪ1£®
£¨i£©ÇóÖ¤£ºÖ±ÏßMNºã¹ý¶¨µã£¬²¢Çó³ö¸Ã¶¨µã×ø±ê£»
£¨ii£©ÈôOÎª×ø±êÔ­µã£¬Çó$\overrightarrow{OM}$•$\overrightarrow{ON}$µÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÓÉÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬½âµÃa£¬b£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©£¨i£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½£¬Éè³öÉèÖ±ÏßMN£ºy=kx+t£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨3+k2£©x2+2ktx+t2-3=0£¬ÔËÓÃΤ´ï¶¨Àí£¬½áºÏM£¬NÔÚÖ±ÏßÉÏ£¬Âú×ãÖ±Ïß·½³Ì£¬»¯¼òÕûÀí£¬¿ÉµÃtµÄ·½³Ì£¬½â·½³Ì¿ÉµÃt£¬¼´¿ÉÖ¤µÃÖ±ÏßMNºã¹ý¶¨µã£»
£¨ii£©ÓÉ£¨i£©¿ÉµÃ$\overrightarrow{OM}$•$\overrightarrow{ON}$=x1x2+y1y2£¬ÔËÓã¨i£©µÄ½áÂÛ£¬ÓÉÅбðʽ´óÓÚ0£¬»¯¼òÕûÀí£¬²¢ÔËÓû»Ôª·¨£¬Óɲ»µÈʽµÄÐÔÖÊ£¬¼´¿ÉµÃµ½ËùÇó·¶Î§£®

½â´ð ½â£º£¨¢ñ£©ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
ÓÉÌâÒâ¿ÉµÃa2-b2=2£¬e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$£¬c=$\sqrt{2}$£¬
½âµÃa=$\sqrt{3}$£¬b=1£¬
¼´ÓÐÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{y}^{2}}{3}$+x2=1£»
£¨¢ò£©£¨i£©Ö¤Ã÷£ºÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉA£¨0£¬-$\sqrt{3}$£©£¬Ö±ÏßAMÓëANµÄбÂÊÖ®»ýΪ1£¬
¿ÉµÃ$\frac{{y}_{1}+\sqrt{3}}{{x}_{1}}$•$\frac{{y}_{2}+\sqrt{3}}{{x}_{2}}$=1£¬
¼´ÓÐx1x2=y1y2+$\sqrt{3}$£¨y1+y2£©+3£¬
ÓÉÌâÒâ¿ÉÖªÖ±ÏßMNµÄбÂÊ´æÔÚÇÒ²»Îª0£¬ÉèÖ±ÏßMN£ºy=kx+t£¬
´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨3+k2£©x2+2ktx+t2-3=0£¬
¿ÉµÃx1x2=$\frac{{t}^{2}-3}{3+{k}^{2}}$£¬x1+x2=-$\frac{2kt}{3+{k}^{2}}$£¬
y1+y2=k£¨x1+x2£©+2t=2t-$\frac{2{k}^{2}t}{3+{k}^{2}}$=$\frac{6t}{3+{k}^{2}}$£¬
y1y2=k2x1x2+kt£¨x1+x2£©+t2=k2•$\frac{{t}^{2}-3}{3+{k}^{2}}$+kt£¨-$\frac{2kt}{3+{k}^{2}}$£©+t2=$\frac{3{t}^{2}-3{k}^{2}}{3+{k}^{2}}$£¬
Ôò$\frac{{t}^{2}-3}{3+{k}^{2}}$=$\frac{3{t}^{2}-3{k}^{2}}{3+{k}^{2}}$+$\sqrt{3}$£¨$\frac{6t}{3+{k}^{2}}$£©+3£¬
»¯Îªt2+3$\sqrt{3}$t+6=0£¬
½âµÃt=-2$\sqrt{3}$£¨-$\sqrt{3}$ÉáÈ¥£©£¬
ÔòÖ±ÏßMNµÄ·½³ÌΪy=kx-2$\sqrt{3}$£¬
¼´Ö±ÏßMNºã¹ý¶¨µã£¬¸Ã¶¨µã×ø±êΪ£¨0£¬-2$\sqrt{3}$£©£»
£¨ii£©ÓÉ£¨i£©¿ÉµÃ$\overrightarrow{OM}$•$\overrightarrow{ON}$=x1x2+y1y2
=$\frac{{t}^{2}-3}{3+{k}^{2}}$+$\frac{3{t}^{2}-3{k}^{2}}{3+{k}^{2}}$=$\frac{4{t}^{2}-3-3{k}^{2}}{3+{k}^{2}}$=$\frac{45-3{k}^{2}}{3+{k}^{2}}$£¬
ÓÉ£¨3+k2£©x2+2ktx+t2-3=0£¬
¿ÉµÃ¡÷=4k2t2-4£¨t2-3£©£¨3+k2£©=48k2-36£¨3+k2£©£¾0£¬
½âµÃk2£¾9£®
Áî3+k2=m£¬Ôòm£¾12£¬ÇÒk2=m-3£¬
¼´ÓÐ$\frac{45-3{k}^{2}}{3+{k}^{2}}$=$\frac{45-3£¨m-3£©}{m}$=$\frac{54}{m}$-3£¬
ÓÉm£¾12£¬¿ÉµÃ-3£¼$\frac{54}{m}$-3£¼$\frac{3}{2}$£®
Ôò$\overrightarrow{OM}$•$\overrightarrow{ON}$µÄȡֵ·¶Î§ÊÇ£¨-3£¬$\frac{3}{2}$£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½£¬¿¼²éÖ±Ïߺã¹ý¶¨µãÎÊÌ⣬עÒâÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬ÒÔ¼°Ö±ÏßµÄбÂʹ«Ê½£¬ÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¿¼²éת»¯Ë¼ÏëºÍ»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬¾ßÓÐÒ»¶¨µÄ×ÛºÏÐÔ£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®Ë«ÇúÏß$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨a£¾0£¬b£¾0£©$ÉϺá×ø±êΪ$\frac{3}{2}a$µÄµãµ½ÓÒ½¹µãµÄ¾àÀë´óÓÚËüµ½×ó×¼ÏߵľàÀ룬Ôò¸ÃË«ÇúÏßÁ½Ìõ½¥½üÏßËù¼ÐµÄÈñ½ÇµÄȡֵ·¶Î§ÊÇ£¨0¡ã£¬60¡ã£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Èçͼ£¬Ò»¸öÕýÎå½ÇÐDZ¡Æ¬£¨Æä¶Ô³ÆÖáÓëË®Ãæ´¹Ö±£©ÔÈËÙµØÉý³öË®Ãæ£¬¼Çtʱʱ¿ÌÎå½ÇÐǶ³öË®Ãæ²¿·ÖµÄͼÐÎÃæ»ýΪS£¨t£©£¨S£¨0£©=0£©£¬Ôòµ¼º¯Êýy=S¡ä£¨t£©µÄͼÏó´óÖÂΪ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªy=f£¨x£©ÔÚ¶¨ÒåÓò£¨-1£¬1£©ÉÏÊǼõº¯Êý£¬ÇÒf£¨1-a£©£¼f£¨2a-1£©£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$a£¼\frac{2}{3}$B£®a£¾0C£®$0£¼a£¼\frac{2}{3}$D£®a£¼0»ò$a£¾\frac{2}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÈçͼËùʾ£¬Ôڱ߳¤Îª1µÄÕý·½ÐÎf£¨x£©ÖÐÈÎȡһµãf£¨x£©£¬Ôòµã[-1£¬1£©Ç¡ºÃÈ¡×ÔÒõÓ°²¿·ÖµÄ¸ÅÂÊΪ$\frac{1}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ö±Ïß$x+\sqrt{3}y-2=0$±»Ô²£¨x-1£©2+y2=1½ØµÃµÄÏ߶εij¤Îª£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®$\sqrt{2}$C£®$\sqrt{6}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÍÖÔ²$C£º\frac{x^2}{a^2}+\frac{y^2}{b^2}=1£¨{a£¾b£¾0}£©$µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{2}$£¬¹ýÍÖÔ²µÄ½¹µãÇÒÓ볤Öá´¹Ö±µÄÏÒ³¤Îª1£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÉèµãMΪÍÖÔ²ÉÏλÓÚµÚÒ»ÏóÏÞÄÚÒ»¶¯µã£¬A£¬B·Ö±ðΪÍÖÔ²µÄ×ó¶¥µãºÍ϶¥µã£¬Ö±ÏßMBÓëxÖá½»ÓÚµãC£¬Ö±ÏßMAÓëÖá½»ÓÚµãD£¬ÇóÖ¤£ºËıßÐÎABCDµÄÃæ»ýΪ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªf £¨x£©=sinx+$\sqrt{3}$cosx £¨x¡ÊR£©£®
£¨¢ñ£©Çóº¯Êýf £¨x£©µÄÖÜÆÚºÍ×î´óÖµ£»
£¨¢ò£©Èôf £¨A+$\frac{¦Ð}{6}$£©=$\frac{2}{3}$£¬Çócos2AµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖª¶¨ÒåÔÚRÉϵĿɵ¼º¯Êýf£¨x£©µÄµ¼º¯ÊýΪf'£¨x£©£¬Âú×ãf'£¨x£©£¼f£¨x£©£¬ÇÒf£¨x+2£©=f£¨-x+2£©£¬f£¨4£©=1£¬Ôò²»µÈʽf£¨x£©£¼exµÄ½â¼¯Îª£¨¡¡¡¡£©
A£®£¨-¡Þ£¬e4£©B£®£¨e4£¬+¡Þ£©C£®£¨-¡Þ£¬0£©D£®£¨0£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸