·ÖÎö £¨¢ñ£©ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬ÓÉÀëÐÄÂʹ«Ê½ºÍa£¬b£¬cµÄ¹ØÏµ£¬½âµÃa£¬b£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£»
£¨¢ò£©£¨i£©ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÔËÓÃÖ±ÏßµÄбÂʹ«Ê½£¬Éè³öÉèÖ±ÏßMN£ºy=kx+t£¬´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨3+k2£©x2+2ktx+t2-3=0£¬ÔËÓÃΤ´ï¶¨Àí£¬½áºÏM£¬NÔÚÖ±ÏßÉÏ£¬Âú×ãÖ±Ïß·½³Ì£¬»¯¼òÕûÀí£¬¿ÉµÃtµÄ·½³Ì£¬½â·½³Ì¿ÉµÃt£¬¼´¿ÉÖ¤µÃÖ±ÏßMNºã¹ý¶¨µã£»
£¨ii£©ÓÉ£¨i£©¿ÉµÃ$\overrightarrow{OM}$•$\overrightarrow{ON}$=x1x2+y1y2£¬ÔËÓã¨i£©µÄ½áÂÛ£¬ÓÉÅбðʽ´óÓÚ0£¬»¯¼òÕûÀí£¬²¢ÔËÓû»Ôª·¨£¬Óɲ»µÈʽµÄÐÔÖÊ£¬¼´¿ÉµÃµ½ËùÇó·¶Î§£®
½â´ð ½â£º£¨¢ñ£©ÉèÍÖÔ²CµÄ±ê×¼·½³ÌΪ$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
ÓÉÌâÒâ¿ÉµÃa2-b2=2£¬e=$\frac{c}{a}$=$\frac{\sqrt{6}}{3}$£¬c=$\sqrt{2}$£¬
½âµÃa=$\sqrt{3}$£¬b=1£¬
¼´ÓÐÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{y}^{2}}{3}$+x2=1£»
£¨¢ò£©£¨i£©Ö¤Ã÷£ºÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
ÓÉA£¨0£¬-$\sqrt{3}$£©£¬Ö±ÏßAMÓëANµÄбÂÊÖ®»ýΪ1£¬
¿ÉµÃ$\frac{{y}_{1}+\sqrt{3}}{{x}_{1}}$•$\frac{{y}_{2}+\sqrt{3}}{{x}_{2}}$=1£¬
¼´ÓÐx1x2=y1y2+$\sqrt{3}$£¨y1+y2£©+3£¬
ÓÉÌâÒâ¿ÉÖªÖ±ÏßMNµÄбÂÊ´æÔÚÇÒ²»Îª0£¬ÉèÖ±ÏßMN£ºy=kx+t£¬
´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨3+k2£©x2+2ktx+t2-3=0£¬
¿ÉµÃx1x2=$\frac{{t}^{2}-3}{3+{k}^{2}}$£¬x1+x2=-$\frac{2kt}{3+{k}^{2}}$£¬
y1+y2=k£¨x1+x2£©+2t=2t-$\frac{2{k}^{2}t}{3+{k}^{2}}$=$\frac{6t}{3+{k}^{2}}$£¬
y1y2=k2x1x2+kt£¨x1+x2£©+t2=k2•$\frac{{t}^{2}-3}{3+{k}^{2}}$+kt£¨-$\frac{2kt}{3+{k}^{2}}$£©+t2=$\frac{3{t}^{2}-3{k}^{2}}{3+{k}^{2}}$£¬
Ôò$\frac{{t}^{2}-3}{3+{k}^{2}}$=$\frac{3{t}^{2}-3{k}^{2}}{3+{k}^{2}}$+$\sqrt{3}$£¨$\frac{6t}{3+{k}^{2}}$£©+3£¬
»¯Îªt2+3$\sqrt{3}$t+6=0£¬
½âµÃt=-2$\sqrt{3}$£¨-$\sqrt{3}$ÉáÈ¥£©£¬
ÔòÖ±ÏßMNµÄ·½³ÌΪy=kx-2$\sqrt{3}$£¬
¼´Ö±ÏßMNºã¹ý¶¨µã£¬¸Ã¶¨µã×ø±êΪ£¨0£¬-2$\sqrt{3}$£©£»
£¨ii£©ÓÉ£¨i£©¿ÉµÃ$\overrightarrow{OM}$•$\overrightarrow{ON}$=x1x2+y1y2
=$\frac{{t}^{2}-3}{3+{k}^{2}}$+$\frac{3{t}^{2}-3{k}^{2}}{3+{k}^{2}}$=$\frac{4{t}^{2}-3-3{k}^{2}}{3+{k}^{2}}$=$\frac{45-3{k}^{2}}{3+{k}^{2}}$£¬
ÓÉ£¨3+k2£©x2+2ktx+t2-3=0£¬
¿ÉµÃ¡÷=4k2t2-4£¨t2-3£©£¨3+k2£©=48k2-36£¨3+k2£©£¾0£¬
½âµÃk2£¾9£®
Áî3+k2=m£¬Ôòm£¾12£¬ÇÒk2=m-3£¬
¼´ÓÐ$\frac{45-3{k}^{2}}{3+{k}^{2}}$=$\frac{45-3£¨m-3£©}{m}$=$\frac{54}{m}$-3£¬
ÓÉm£¾12£¬¿ÉµÃ-3£¼$\frac{54}{m}$-3£¼$\frac{3}{2}$£®
Ôò$\overrightarrow{OM}$•$\overrightarrow{ON}$µÄȡֵ·¶Î§ÊÇ£¨-3£¬$\frac{3}{2}$£©£®
µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½£¬¿¼²éÖ±Ïߺã¹ý¶¨µãÎÊÌ⣬עÒâÁªÁ¢Ö±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÅбðʽ´óÓÚ0£¬ÒÔ¼°Ö±ÏßµÄбÂʹ«Ê½£¬ÏòÁ¿ÊýÁ¿»ýµÄ×ø±ê±íʾ£¬¿¼²éת»¯Ë¼ÏëºÍ»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬¾ßÓÐÒ»¶¨µÄ×ÛºÏÐÔ£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | B£® | C£® | D£® |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $a£¼\frac{2}{3}$ | B£® | a£¾0 | C£® | $0£¼a£¼\frac{2}{3}$ | D£® | a£¼0»ò$a£¾\frac{2}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{5}$ | B£® | $\sqrt{2}$ | C£® | $\sqrt{6}$ | D£® | $\sqrt{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬e4£© | B£® | £¨e4£¬+¡Þ£© | C£® | £¨-¡Þ£¬0£© | D£® | £¨0£¬+¡Þ£© |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com