精英家教网 > 高中数学 > 题目详情
2.已知等比数列{an}的公比q>1,a1与a4的等比中项是4$\sqrt{2}$,a2和a3的等差中项为6,数列{bn}满足bn=log2an
(1)求{an}的通项公式;
(2)求{bn}的前n项和.

分析 (1)利用等比数列的性质得到a2•a3=a1•a4,根据已知条件列出关于a2,a3的方程解方程求出a2,a3,进一步求出公比,利用等比数列的通项公式求出数列{an}的通项公式;
(2)bn=log2an=n,数列{bn}是首项为1,公差为1 的等差数列,利用等差数列求和公式求解.

解答 解:(1)∵a1与a4的等比中项是4$\sqrt{2}$,a2和a3的等差中项为6,∴$\left\{\begin{array}{l}{{a}_{1}{a}_{4}={a}_{2}{a}_{3}=32}\\{{a}_{2}{+a}_{3}=12}\end{array}\right.$
解得$\left\{\begin{array}{l}{{a}_{2}=4}\\{{a}_{3}=8}\end{array}\right.$或$\left\{\begin{array}{l}{{a}_{2}=8}\\{{a}_{3}=4}\end{array}\right.$
由公比q>1,可得a2=4,a3=8,则q=2.
故数列{an}的通项公式为an=a2qn-2=2n
 (2)bn=log2an=n
数列{bn}是首项为1,公差为1 的等差数列.
令{bn}的前n项和为sn.${s}_{n}=\frac{n}{2}(1+n)=\frac{1}{2}n(n+1)$.

点评 本题考查了等比、等差数列的性质、通项,等差数列求和公式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n的值为
(  )
A.300B.200C.150D.100

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在东辰学校的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了90个面包,以x(单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.
(Ⅰ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量x∈[60,70),则取x=65,且x=65的概率等于需求量落入[60,70)的频率),求食堂每天面包需求量的平均数.
(Ⅱ)求T关于x函数解析式;
(III)根据直方图估计利润T不少于100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的各项均为正数,其前n项和为Sn,且an2+an=2Sn,n∈N*
(1)求a1及an
(2)求满足Sn>210时n的最小值;
(3)令bn=4${\;}^{{a}_{n}}$,证明:对一切正整数n,都有$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}(n∈N*)的前n项和为sn,满足sn=2an-2
(1)求数列{an}的通项公式;
(2)设数列$\left\{{\frac{1}{a_n}}\right\}$的前n项和Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$sin\frac{2017}{4}π$等于(  )
A.1B.-1C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.正项数列{an}的前n项和为Sn满足${S_n}^2-({n^2}+n-1){S_n}-({n^2}+n)=0$.
(1)求Sn及an
(2)令${b_n}=\frac{n+1}{{{{(n+2)}^2}{a_n}^2}}$,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有$\frac{1}{18}≤{T_n}<\frac{5}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若二项式(x-$\frac{2}{\sqrt{x}}$)n的展开式中只有第5项的二项式系数最大,则展开式中含x2项的系数为1120.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知sin(3π-α)=$\frac{2}{3}$,则sinα=(  )
A.$-\frac{2}{3}$B.$\frac{2}{3}$C.-$\frac{\sqrt{5}}{3}$D.$\frac{\sqrt{5}}{3}$

查看答案和解析>>

同步练习册答案