精英家教网 > 高中数学 > 题目详情
10.已知数列{an}的各项均为正数,其前n项和为Sn,且an2+an=2Sn,n∈N*
(1)求a1及an
(2)求满足Sn>210时n的最小值;
(3)令bn=4${\;}^{{a}_{n}}$,证明:对一切正整数n,都有$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{3}$.

分析 (1)当n=1时,${{a}_{1}}^{2}+{a}_{1}=2{a}_{1}$,由此能求出a1=1,由an2+an=2Sn,得${{a}_{n-1}}^{2}+{a}_{n-1}=2{S}_{n-1}$,从而(an+an-1)(an-an-1-1)=0,进而数列{an}是首项和公差都为1的等差数列,由此能求出an=n.
(2)求出Sn=$\frac{n(n+1)}{2}$,由此能求出满足Sn>210时n的最小值.
(3)由题意得${b}_{n}={4}^{n}$,从而数列{$\frac{1}{{b}_{n}}$}是首项和公比都是$\frac{1}{4}$的等比数列,由此能证明对一切正整数n,都有$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{3}$.

解答 解:(1)∵数列{an}的各项均为正数,其前n项和为Sn,且an2+an=2Sn,n∈N*
∴当n=1时,${{a}_{1}}^{2}+{a}_{1}=2{a}_{1}$,且a1>0,解得a1=1,
∵an2+an=2Sn,①,∴${{a}_{n-1}}^{2}+{a}_{n-1}=2{S}_{n-1}$,②
①-②,得:${{a}_{n}}^{2}-{{a}_{n-1}}^{2}+{a}_{n}-{a}_{n-1}=2{a}_{n}$,
整理,得:(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1,
∴数列{an}是首项和公差都为1的等差数列,
∴an=n.
(2)∵数列{an}是首项和公差都为1的等差数列,an=n.
∴Sn=$\frac{n(n+1)}{2}$,
∵Sn>210,∴$\frac{n(n+1)}{2}>210$,
整理,得n2+n-420>0,解得n>20(n<-21舍),
∴满足Sn>210时n的最小值是21.
证明:(3)由题意得${b}_{n}={4}^{n}$,则$\frac{1}{{b}_{n}}=\frac{1}{{4}^{n}}$,
∴数列{$\frac{1}{{b}_{n}}$}是首项和公比都是$\frac{1}{4}$的等比数列,
∴$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$=$\frac{\frac{1}{4}(1-\frac{1}{{4}^{n}})}{1-\frac{1}{4}}$=$\frac{1}{3}(1-\frac{1}{{4}^{n}})$$<\frac{1}{3}$.
故对一切正整数n,都有$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{3}$.

点评 本题考查数列的首项的求法,考查数列的通项公式的求法,考查数列不等式的证明,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x,0<x<9}\\{\frac{9}{x}+1,x≥9}\end{array}\right.$,若f(a)=f(b)=c(a≠b),且f′(a)<0(f′(x)为函数f(x)的导数),则a,b,c的大小关系是(  )
A.c<a<bB.a<b<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知角α的终边上一点的坐标为(-sin25°,cos25°),则角α的最小正值为115°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知双曲线的中心在原点,左、右焦点F1、F2在坐标轴上,离心率为$\sqrt{2}$,且过点$({4,-\sqrt{10}})$,点M(3,m)在双曲线上,
(1)求双曲线的方程;
(2)求证:$\overrightarrow{{F_1}M}•\overrightarrow{{F_2}M}=0$;
(3)求△F1MF2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}中,a1=2,an=2-$\frac{1}{{a}_{n-1}}$(n≥2,n∈N*).设bn=$\frac{1}{{a}_{n}-1}$(n∈N*),求证:数列{bn}是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知an=$\frac{n(1-b)+3b-2}{{{b^{n-1}}}}$(b>1,n≥2),若对不小于4的自然数n,恒有不等式an+1>an成立,则实数b的取值范围是(3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等比数列{an}的公比q>1,a1与a4的等比中项是4$\sqrt{2}$,a2和a3的等差中项为6,数列{bn}满足bn=log2an
(1)求{an}的通项公式;
(2)求{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.六个人排成一排,甲、乙两人之间至少有一个人的排法种数为(  )
A.600B.480C.360D.240

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.二项式(a+2b)n展开式中的第二项系数是8,则它的第三项的二项式系数为(  )
A.24B.18C.6D.16

查看答案和解析>>

同步练习册答案