精英家教网 > 高中数学 > 题目详情
5.已知数列{an}中,a1=2,an=2-$\frac{1}{{a}_{n-1}}$(n≥2,n∈N*).设bn=$\frac{1}{{a}_{n}-1}$(n∈N*),求证:数列{bn}是等差数列.

分析 利用已知递推关系,作差bn+1-bn,证明为常数即可.

解答 证明:∵a1=2,an=2-$\frac{1}{{a}_{n-1}}$(n≥2,n∈N*),bn=$\frac{1}{{a}_{n}-1}$(n∈N*),
∴bn+1-bn=$\frac{1}{{a}_{n+1}-1}$-$\frac{1}{{a}_{n}-1}$=$\frac{1}{2-\frac{1}{{a}_{n}}-1}$-$\frac{1}{{a}_{n}-1}$=$\frac{{a}_{n}}{{a}_{n}-1}$-$\frac{1}{{a}_{n}-1}$=1,b1=$\frac{1}{{a}_{1}-1}$=1,
∴数列{bn}是等差数列,首项为1,公差为1.

点评 本题考查了数列递推关系、等差数列的定义、作差法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合A={x||2x-1|<3},B={x|x<1,或x>3},则A∩B等于(  )
A.{x|-1<x<3}B.{x|x<2,或x>3}C.{x|-1<x<1}D.{x|x<-1,或x>3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.甲乙比赛,先胜三局可赢得奖金1千元.当甲胜两局乙胜一局时因故终止比赛.假设每局胜率甲乙都是0.5,现在奖金应该按怎样的比例分配给甲乙(  )
A.1:1B.2:1C.3:1D.4:1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在东辰学校的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了90个面包,以x(单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.
(Ⅰ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量x∈[60,70),则取x=65,且x=65的概率等于需求量落入[60,70)的频率),求食堂每天面包需求量的平均数.
(Ⅱ)求T关于x函数解析式;
(III)根据直方图估计利润T不少于100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知p是r的充分条件,而r是q的必要条件,同时又是s的充分条件,q是s的必要条件,试判断:
(1)s是p的什么条件?
(2)p是q的什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的各项均为正数,其前n项和为Sn,且an2+an=2Sn,n∈N*
(1)求a1及an
(2)求满足Sn>210时n的最小值;
(3)令bn=4${\;}^{{a}_{n}}$,证明:对一切正整数n,都有$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设数列{an}(n∈N*)的前n项和为sn,满足sn=2an-2
(1)求数列{an}的通项公式;
(2)设数列$\left\{{\frac{1}{a_n}}\right\}$的前n项和Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.正项数列{an}的前n项和为Sn满足${S_n}^2-({n^2}+n-1){S_n}-({n^2}+n)=0$.
(1)求Sn及an
(2)令${b_n}=\frac{n+1}{{{{(n+2)}^2}{a_n}^2}}$,数列{bn}的前n项和为Tn,证明:对于任意的n∈N*,都有$\frac{1}{18}≤{T_n}<\frac{5}{64}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知公差不为零的等差数列{an}中,a1=1且a1,a3,a9成等比数列,
(Ⅰ)求数列{an}的通项公式
(Ⅱ)设bn=n•2${\;}^{{a}_{n}}$求数列[bn}的前n项和Sn

查看答案和解析>>

同步练习册答案