精英家教网 > 高中数学 > 题目详情
1.已知角α的终边上一点的坐标为(-sin25°,cos25°),则角α的最小正值为115°.

分析 利用任意角的三角函数的定义,诱导公式,求得角α的最小正值.

解答 解:∵角α的终边上一点的坐标为(-sin25°,cos25°),为第二象限角,
且tanα=$\frac{cos25°}{-sin25°}$=-cot25°=-tan65°=tan(180°-65°)=tan115°,
则角α的最小正值为115°,
故答案为:115°.

点评 本题主要考查任意角的三角函数的定义,诱导公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若直线l的斜率为-1,则直线l的倾斜角为$\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n的值为
(  )
A.300B.200C.150D.100

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设等比数列{an}中,Sn是前n项和,若8a2-a5=0,则$\frac{{S}_{6}}{{S}_{3}}$=9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.甲乙比赛,先胜三局可赢得奖金1千元.当甲胜两局乙胜一局时因故终止比赛.假设每局胜率甲乙都是0.5,现在奖金应该按怎样的比例分配给甲乙(  )
A.1:1B.2:1C.3:1D.4:1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.甲、乙、丙、丁4人进行篮球训练,互相传球,要求每人接球后立即传给别人,开始由甲发球,并作为第一次传球,第四次传球后,球又回到甲手中的传球方式共有21种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在东辰学校的职工食堂中,食堂每天以3元/个的价格从面包店购进面包,然后以5元/个的价格出售.如果当天卖不完,剩下的面包以1元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了90个面包,以x(单位:个,60≤x≤110)表示面包的需求量,T(单位:元)表示利润.
(Ⅰ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量x∈[60,70),则取x=65,且x=65的概率等于需求量落入[60,70)的频率),求食堂每天面包需求量的平均数.
(Ⅱ)求T关于x函数解析式;
(III)根据直方图估计利润T不少于100元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的各项均为正数,其前n项和为Sn,且an2+an=2Sn,n∈N*
(1)求a1及an
(2)求满足Sn>210时n的最小值;
(3)令bn=4${\;}^{{a}_{n}}$,证明:对一切正整数n,都有$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若二项式(x-$\frac{2}{\sqrt{x}}$)n的展开式中只有第5项的二项式系数最大,则展开式中含x2项的系数为1120.

查看答案和解析>>

同步练习册答案