精英家教网 > 高中数学 > 题目详情
18.方程log22x-log2(4x2)+a=0有两个不等的实根,求a的取值范围.

分析 设log2x=t,则原方程转化为t2-2-2t+a=0,根据判别式即可求出a的范围.

解答 解:设log2x=t,
∵方程log22x-log2(4x2)+a=0,
∴t2-2-2t+a=0,
∵方程log22x-log2(4x2)+a=0有两个不等的实根,
∴4-4(a-2)>0,
∴a<3,
故a的取值范围为(-∞,3).

点评 本题主要考查对数的运算性质,体现函数与方程的数学思想,应多加注意,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.下面给出四个命题的表述:
①直线(3+m)x+4y-3+3m=0(m∈R)恒过定点(-3,3);
②线段AB的端点B的坐标是(3,4),A在圆x2+y2=4上运动,则线段AB的中点M的轨迹方程${(x-\frac{3}{2})^2}$+(y-2)2=1
③已知M={(x,y)|y=$\sqrt{1-{x^2}}$},N={(x,y)|y=x+b},若M∩N≠∅,则b∈[-$\sqrt{2}$,$\sqrt{2}$];
④已知圆C:(x-b)2+(y-c)2=a2(a>0,b>0,c>0)与x轴相交,与y轴相离,则直线ax+by+c=0与直线x+y+1=0的交点在第二象限.
其中表述正确的是①②④( (填上所有正确结论对应的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校高三学生有两部分组成,应届生与复读生共2000学生,期末考试数学成绩换算为100分的成绩如图所示,从高三的学生中,利用分层抽样,抽取100名学生的成绩绘制成频率分布直方图:
(1)若抽取的学生中,应届生与复读生的比为9﹕1,确定高三应届生与复读生的人数;
(2)计算此次数学成绩的平均分;
(3)若抽取的[80,90),[90,100]的学生中,应届生与复读生的比例关系也是9﹕1,从抽取的[80,90),[90,100]两段的复读生中,选两人进行座谈,设抽取的[80,90)的人数为随机变量ξ,求ξ的分布列与期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在2015年全国青运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手,若从中任选2人,则选出的火炬手的编号不相连的概率为(  )
A.$\frac{3}{10}$B.$\frac{3}{5}$C.$\frac{7}{10}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.下列结论正确的个数是3.
①对于函数f(x)=$\left\{\begin{array}{l}{sinπx,x∈[0,2]}\\{\frac{1}{2}f(x-2),x∈(2,+∞)}\\{\;}\end{array}\right.$,任取x1、x2∈[0,+∞),都有|f(x1)-f(x2)|≤2恒成立;
②函数f(x)=cos2αx-sin2αx的最小正周期为π是“α=1”的必要不充分条件;
③x2+2x≥ax在x∈[1,2]上恒成立?(x2+2x)min≥(ax)maz在x∈[1,2]上恒成立;
④?m∈R,使f(x)=mx${\;}^{{m}^{2}+2m}$是幂函数,且在(0,+∞)上是单调递增.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数y=f(x)的定义域为[1,3],那么函数y=f(3x)的定义域为[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={a|x2+2ax+4>0,不等式对x∈R恒成立},B={x|2<($\sqrt{2}$)x+k<4}
(1)若k=1,求A∪B;
(2)若A∩B=∅,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知O为坐标原点,函数y=sin$\frac{π}{2}$x与函数y=tan$\frac{π}{4}$x(x∈(0,4)的图象交点为A,B,则$\overrightarrow{OA}$$•\overrightarrow{OB}$=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\frac{x}{\sqrt{1-{x}^{2}}}$的导函数为$\frac{\sqrt{1-{x}^{2}}}{(1-{x}^{2})^{2}}$.

查看答案和解析>>

同步练习册答案