精英家教网 > 高中数学 > 题目详情
4.求y=x2(2-x)(0<x<2)最大值.

分析 根据三元基本不等式a+b+c≥3$\root{3}{abc}$(a,b,c>0,a=b=c取得等号),由y=x2(2-x)=$\frac{1}{2}$•x•x•(4-2x),计算即可得到所求最大值.

解答 解:由0<x<2,可得2-x>0,
则y=x2(2-x)=$\frac{1}{2}$•x•x•(4-2x)
≤$\frac{1}{2}$•($\frac{x+x+4-2x}{3}$)3=$\frac{1}{2}$•$\frac{64}{27}$=$\frac{32}{27}$.
当且仅当x=4-2x,即x=$\frac{4}{3}$时,
取得最大值$\frac{32}{27}$.

点评 本题考查函数最值的求法,注意运用变形和三元均值不等式,注意满足的条件:一正二定三等,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.下面给出了四个类比推理,结论正确的是(  )
①由若a,b,c∈R则(ab)c=a(bc);类比推出:若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为三个向量则($\overrightarrow{a}$$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$$\overrightarrow{c}$)
②在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则$\frac{AG}{GD}$=2;类比推出:在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则$\frac{AO}{OM}$=3.
③a,b为实数,若a2+b2=0则a=b=0;类比推出:z1,z2为复数,若z12+z22=0则z1=z2
④若数列{an}是等差数列,对于bn=$\frac{1}{n}({a_1}$+a2+…+an),则数列{bn}也是等差数列;类比推出:若数列{cn}是各项都为正数的等比数列,dn=$\root{n}{{{c_1}•{c_2}•{c_3}•…•{c_n}}}$,则数列{dn}也是等比数列.
A.①②B.②③C.②④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V=$\frac{1}{12}$×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为(  )
A.3B.3.14C.3.2D.3.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.5名战士站成一排,其中甲不站在最左边的不同站法的种数为96.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sinα+sinβ=sin(α+β),cosα+cosβ=cos(α+β).求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知Rt△ABC的斜边AB=2,则其内切圆的半径r的取值范围是(  )
A.(1,$\sqrt{2}$]B.[1,$\sqrt{2}$]C.(0,$\sqrt{2}$-1]D.[1,$\sqrt{2}$-1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知等差数列{an}满足a2=0,a6+a8=-10,则a2016=(  )
A.2014B.2015C.-2014D.-2015

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在数列{an}中,an=n2cosnπ(n∈N*),则a1+a2+…+a100=5050.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.有2000名网购者在11月11日当天于某购物网站进行网购消费(消费金额不超过1000元),其中有女士1100名,男士900名、该购物网站为优化营销策略,根据性别采用分层抽样的方法从这2000名网购者中抽取200名进行分析,如下表:(消费金额单位:元)
女士消费情况:
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000]
人数10253530x
男士消费情况:
消费金额(0,200)[200,400)[400,600)[600,800)[800,1000]
人数153025y5
(1)计算x,y的值;在抽出的200名且消费金额在[800,1000](单位:元)的网购者中随机选出两名发放网购红包,求选出的两名网购者都是男士的概率;
(2)若消费金额不低于600元的网购者为“网购达人”,低于600元的网购者为“非网购达人”,根据以上统计数据填写2×2列联表,并回答能否在犯错误的概率不超过0.05的前提下认为“是否为‘网购达人’与性别有关?”
女士男士总计
网购达人
非网购达人
总计
附:
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
(K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

同步练习册答案