精英家教网 > 高中数学 > 题目详情
14.下面给出了四个类比推理,结论正确的是(  )
①由若a,b,c∈R则(ab)c=a(bc);类比推出:若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为三个向量则($\overrightarrow{a}$$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$$\overrightarrow{c}$)
②在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则$\frac{AG}{GD}$=2;类比推出:在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则$\frac{AO}{OM}$=3.
③a,b为实数,若a2+b2=0则a=b=0;类比推出:z1,z2为复数,若z12+z22=0则z1=z2
④若数列{an}是等差数列,对于bn=$\frac{1}{n}({a_1}$+a2+…+an),则数列{bn}也是等差数列;类比推出:若数列{cn}是各项都为正数的等比数列,dn=$\root{n}{{{c_1}•{c_2}•{c_3}•…•{c_n}}}$,则数列{dn}也是等比数列.
A.①②B.②③C.②④D.③④

分析 逐个验证:①向量要考虑方向.
②利用等体积,即可判断;
③数集有些性质以传递的,但有些性质不能传递,因此,要判断类比的结果是否正确,关键是要在新的数集里进行论证,当然要想证明一个结论是错误的,也可直接举一个反例;
④在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等.

解答 解:①由若a,b,c∈R则(ab)c=a(bc);类比推出:若$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$为三个向量则($\overrightarrow{a}$$\overrightarrow{b}$)$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow{b}$$\overrightarrow{c}$),不正确,因为($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$与$\overrightarrow{c}$共线,$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)与$\overrightarrow{a}$共线,当$\overrightarrow{a}$、$\overrightarrow{c}$方向不同时,向量的数量积运算结合律不成立;
②在正三角形ABC中,若D是边BC的中点,G是三角形ABC的重心,则$\frac{AG}{GD}$=2;类比推出:在棱长都相等的四面体ABCD中,若△BCD的中心为M,四面体内部一点O到四面体各面的距离都相等,则$\frac{AO}{OM}$=3,正确.
③在复数集C中,若z1,z2∈C,z12+z22=0,则可能z1=1且z2=i.故错误
④在类比等差数列的性质推理等比数列的性质时,我们一般的思路有:由加法类比推理为乘法,由减法类比推理为除法,由算术平均数类比推理为几何平均数等,故我们可以类比推出:若数列{cn}是各项都为正数的等比数列,dn=$\root{n}{{{c_1}•{c_2}•{c_3}•…•{c_n}}}$,则数列{dn}也是等比数列.正确.
故选:C.

点评 类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).但类比推理的结论不一定正确,还需要经过证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列向量中不是单位向量的是(  )
A.(-1,0)B.(1,1)C.(cos37°,sin37°)D.$\frac{\overline a}{{|{\overline a}|}}(|{\overline a}|≠0)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.要得到函数y=sin2x的图象,只要将函数y=sin(2x-$\frac{π}{3}$)的图象(  )
A.向左平行移动$\frac{π}{3}$个单位B.向左平行移动$\frac{π}{6}$个单位
C.向右平行移动$\frac{π}{3}$个单位D.向右平行移动$\frac{π}{6}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.勾股定理:在直角边长为a、b,斜边长为c的直角三角形中,有a2+b2=c2.类比勾股定理可得,在长、宽、高分别为p、q、r,体对角线长为d 的长方体中,有(  )
A.p2+q2+r2+pq+qr+rp=d2B.p3+q3+r3=d3
C.p2+q2+r2=d2D.p+q+r=d

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{x^2}{1-x}$(x≠1),数列{an}满足a1=m(m≠1),an+1=f(an).
(Ⅰ)当m=-1时,写出数列{an}的通项公式;
(Ⅱ)是否存在实数m,使得数列{an}是等比数列?若存在,求出所有符合要求的m的值;若不存在,请说明理由;
(Ⅲ)当0<m<$\frac{1}{2}$时,求证:$\underset{\stackrel{n}{π}}{i=1}$(ai+1+ai)<$\frac{1}{2m}$.
(其中π是求乘积符号,如$\underset{\stackrel{5}{π}}{i=1}$i=1×2×3×4×5,$\underset{\stackrel{n}{π}}{i=1}$ai=a1×a2×…×an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知两个同底的正四棱锥的所有顶点都在同一球面上,它们的底面边长为2,体积的比值为$\frac{1}{2}$,则该球的表面积为9π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列类比推理的结论不正确的是(  )
①类比“实数的乘法运算满足结合律”,得到猜想“向量的数量积运算满足结合律”;
②类比“设等差数列{an}的前n项和为Sn,则S4,S8-S4,S12-S8成等差数列”,得到猜想“设等比数列{bn}的前n项积为Tn,则T4,$\frac{{T}_{8}}{{T}_{4}}$,$\frac{{T}_{12}}{{T}_{8}}$成等比数列”;
③类比“平面内,同垂直于一直线的两直线相互平行”,得到猜想“空间中,同垂直于一直线的两直线相互平行”;
④类比“设AB为圆的直径,P为圆上任意一点,直线PA,PB的斜率存在,则kPA•kPB为常数”,得到猜想“设AB为椭圆的长轴,P为椭圆上任意一点,直线PA,PB的斜率存在,则kPA•kPB为常数”.
A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)的图象如图所示,f′(x)是f(x)的导函数,设a=f′(-2),b=f′(-3),c=f(-2)-f(-3),则a,b,c由小到大的关系为a<c<b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求y=x2(2-x)(0<x<2)最大值.

查看答案和解析>>

同步练习册答案