精英家教网 > 高中数学 > 题目详情

某一运动物体,在x(s)时离出发点的距离(单位:m)是f(x)=x3+x2+2x.
(1)求在第1s内的平均速度;
(2)求在1s末的瞬时速度;
(3)经过多少时间该物体的运动速度达到14m/s?

(1)m/s(2)6m/s(3)2s

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线y=f(x)在(2,f(2))处的切线方程;
(2)若g(x)=f(x)一有两个不同的极值点.其极小值为M,试比较2M与一3的大小,并说明理由;
(3)设q>p>2,求证:当x∈(p,q)时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中是常数,且
(1)求函数的极值;
(2)证明:对任意正数,存在正数,使不等式成立;
(3)设,且,证明:对任意正数都有:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)当时,求曲线处的切线方程;
(Ⅱ)当时,求函数的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数,若对于,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ax+x2-xlna(a>0,a≠1).
(1)当a>1时,求证:函数f(x)在(0,+∞)上单调递增;
(2)若函数y=|f(x)-t|-1有三个零点,求t的值;
(3)若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=lnx,g(x)=ax2+bx(a≠0),设函数f(x)的图象C1与函数g(x)的图象C2交于两点P、Q,过线段PQ的中点R作x轴垂线分别交C1、C2于点M、N,问是否存在点R,使C1在点M处的切线与C2在点N处的切线互相平行?若存在,求出点R的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

yf(x)是二次函数,方程f(x)=0有两个相等的实
根,且f′(x)=2x+2.
(1)求yf(x)的表达式;
(2)求yf(x)的图象与两坐标轴所围成图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知ab∈R,函数f(x)=a+ln(x+1)的图象与g(x)=x3x2bx的图象在交点(0,0)处有公共切线.
(1)证明:不等式f(x)≤g(x)对一切x∈(-1,+∞)恒成立;
(2)设-1<x1x2,当x∈(x1x2)时,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求由直线x=0,x=1,y=0和曲线yx(x-1)围成的图形面积.

查看答案和解析>>

同步练习册答案