精英家教网 > 高中数学 > 题目详情

已知函数
(1)求曲线y=f(x)在(2,f(2))处的切线方程;
(2)若g(x)=f(x)一有两个不同的极值点.其极小值为M,试比较2M与一3的大小,并说明理由;
(3)设q>p>2,求证:当x∈(p,q)时,.

(1);(2);(3)证明过程详见解析.

解析试题分析:本题主要考查导数的运算、利用导数研究函数的单调性、利用导数求函数的极值和最值、利用导数求曲线的切线方程等数学知识,考查学生分析问题解决问题的能力、转化能力和计算能力.第一问,先对求导,将代入到中得到切线的斜率,将代入到中得到切点的纵坐标,最后利用点斜式,直接写出切线方程;第二问,对求导,由于有2个不同的极值点,所以有2个不同的根,即有两个不同的根,所以,可以解出a的取值范围,所以根据的单调性判断出为极小值,通过函数的单调性求最值,从而比较大小;第三问,用分析法证明分析出只须证,构造函数,利用函数的单调性证明,同理再证明,最后利用不等式的传递性得到所证不等式.
试题解析:(1)易知,∴ 
∴所求的切线方程为,即 4分
(2)易知
有两个不同的极值点
有两个不同的根
 解得               6分
递增,递减,递增
的极小值
又∵

,∴递减
,故                        9分
(3)先证明:当时,
即证:
只需证:
事实上,设
易得,∴内递增
  即原式成立                        12分
同理可以证明当时,   
综上当时,.             14分
考点:1.利用导数判断函数的单调性;2.利用导数求函数的极值和最值;3.利用导数求曲线的切线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若曲线在点处的切线与直线平行,求实数的值;
(2)若函数处取得极小值,且,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

.
(1)当取到极值,求的值;
(2)当满足什么条件时,在区间上有单调递增的区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间和极值;
(2)设,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若,求函数的单调区间;
(2)若函数在区间上是减函数,求实数的取值范围;
(3)过坐标原点作曲线的切线,证明:切点的横坐标为.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,求曲线在点处的切线方程;
(2)当时,讨论的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数处取得极值2
(1)求函数的表达式;
(2)当满足什么条件时,函数在区间上单调递增?
(3)若图象上任意一点,直线与的图象相切于点P,求直线的斜率的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数为常数),在时取得极值.
(1)求实数的值;
(2)当时,求函数的最小值;
(3)当时,试比较的大小并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某一运动物体,在x(s)时离出发点的距离(单位:m)是f(x)=x3+x2+2x.
(1)求在第1s内的平均速度;
(2)求在1s末的瞬时速度;
(3)经过多少时间该物体的运动速度达到14m/s?

查看答案和解析>>

同步练习册答案