精英家教网 > 高中数学 > 题目详情

已知函数为常数),在时取得极值.
(1)求实数的值;
(2)当时,求函数的最小值;
(3)当时,试比较的大小并证明.

(1);(2)取最小值;(3)

解析试题分析:(1)因为函数 (为常数),在时取得极值,故,因此,先对函数求导得,,由可得实数的值;(2)当时,求函数的最小值,当时,由,代入得 ,对求导,判断单调性,即可得函数的最小值;(3)比较的大小,直接比较不好比较,可比较对数的大小即,两式作差得,只需判断它的符号,即判断的符号,即判断的符号,可构造函数,证明即可.
试题解析:(1) 
        (3分)
(2)时 
  
上单调递减,在上单调递增       (6分)

∴当时,取最小值           (8分)
(3)令 
   ,∴上单调递减,在上单调递增  ,∴ 当且仅当时取最小值
 ∴ 
 ∴
  ∴       (14分)
考点:函数的极值,函数的最值,比较大小,函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

经销商用一辆型卡车将某种水果运送(满载)到相距400km的水果批发市场.据测算,型卡车满载行驶时,每100km所消耗的燃油量(单位:)与速度(单位:km/h)的关系近似地满足,除燃油费外,人工工资、车损等其他费用平均每小时300元.已知燃油价格为7.5元/L.
(1)设运送这车水果的费用为(元)(不计返程费用),将表示成速度的函数关系式;
(2)卡车该以怎样的速度行驶,才能使运送这车水果的费用最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线y=f(x)在(2,f(2))处的切线方程;
(2)若g(x)=f(x)一有两个不同的极值点.其极小值为M,试比较2M与一3的大小,并说明理由;
(3)设q>p>2,求证:当x∈(p,q)时,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)求的单调区间;
(2)求函数上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若,求的单调递增区间;
(2)若曲线轴相切于异于原点的一点,且的极小值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图象经过点,且在处的切线方程是
(1)求的解析式;(2)求的单调递增区间

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中是常数,且
(1)求函数的极值;
(2)证明:对任意正数,存在正数,使不等式成立;
(3)设,且,证明:对任意正数都有:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)当时,求曲线处的切线方程;
(Ⅱ)当时,求函数的单调区间;
(Ⅲ)在(Ⅱ)的条件下,设函数,若对于,使成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求由直线x=0,x=1,y=0和曲线yx(x-1)围成的图形面积.

查看答案和解析>>

同步练习册答案