精英家教网 > 高中数学 > 题目详情
17.已知正项等比数列{an},其前n项和为Sn,ak-1=2,ak•ak+2=a${\;}_{5}^{2}$=64,则S10等于(  )
A.410-1B.$\frac{{4}^{10}-1}{3}$C.210-1D.$\frac{{2}^{10}-1}{2}$

分析 设正项等比数列{an}的公比为q>0,由于ak-1=2,ak•ak+2=a${\;}_{5}^{2}$=64,可得:ak+1=${a}_{k-1}{q}^{2}$=2q2,于是64=${a}_{1}^{2}$(q42=$({a}_{k+1})^{2}$=(2q22,再利用等比数列的前n项和公式即可得出.

解答 解:设正项等比数列{an}的公比为q>0,
∵ak-1=2,ak•ak+2=a${\;}_{5}^{2}$=64,
∴ak+1=${a}_{k-1}{q}^{2}$=2q2
∴64=${a}_{1}^{2}$(q42=$({a}_{k+1})^{2}$=(2q22
解得q=2,a1=$\frac{1}{2}$.
∴S10=$\frac{\frac{1}{2}[1-{2}^{10}]}{1-2}$=$\frac{{2}^{10}-1}{2}$.
故选:D.

点评 本题考查了等比数列的通项公式及其前n项和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.某商场销售一种“艾丽莎”品牌服装,销售经理根据销售记录发现,该服装在过去的一个月内(以30天计)每件的销售价格P(x)(百元)与时间x(天)的函数关系近似满足P(x)=1+$\frac{k}{x}$(k为正的常数),日销售量Q(x)(件)与时间x(天)的部分数据如表所示:
 x(天) 10 20 25 30
 Q(x)(件) 110 120 125 120
已知第2哦天的日销售量为126百元.
(Ⅰ)求k的值;
(Ⅱ)给出以下三种函数模型:
①Q(x)=a•bx
②Q(x)=a•logbx;
③Q(x)=a|x-25|+b.
请您根据如表中的数据,从中选择你认为最合适的一种函数来描述日销售量Q(x)(件)与时间x(天)的变化关系,并求出该函数的解析式;
(Ⅲ)求该服装的日销收入f(x)(1≤x≤30,x∈N*)(百元)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=21n(x+1)-1nax在其定义域内有且只有一个零点,则实数a的取值集合为(  )
A.|4|B.(-∞,4]C.(-∞,0)D.(-∞,0)∪{4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点A(0,1),B(3,2),C(a,0),若A,B,C三点共线,则a=(  )
A.$\frac{1}{2}$B.-1C.-2D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.命题“?x0∈(0,+∞),x${\;}_{0}^{2}$=x0-1”的否定是(  )
A.?x∈(0,+∞),x2≠x-1B.?x∈(0,+∞),x2=x-1
C.?x0∉(0,+∞),x${\;}_{0}^{2}$≠x0-1D.?x0∈(0,+∞),x${\;}_{0}^{2}$≠x0-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.某人上午7时,乘摩托艇从A港出发前往B港,所需时间x至少为3小时,至多为10小时,然后从B港乘汽车前往C市,所需时间y至少为2.5小时,至多为12.5小时,且要求到达C市的时间为同一天下午4时至9时之间,若从A港到C市所需要的经费ω=100+3(5-x)+2(8-y)元,则所需经费的最小值为93(元)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,若A=30°,a=2,b=2$\sqrt{3}$,则此三角形解的个数为(  )
A.0个B.1个C.2个D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.将(1-$\frac{1}{{x}^{2}}$)n(n∈N+)的展开式中x-4的系数记为an,则$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$+…+$\frac{1}{{a}_{2016}}$=$\frac{2015}{1008}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若△ABC边BC,CA,AB上的高分别为ha、hb、hc,且ha:hb:hc=6:4:3,则tanC=-$\sqrt{15}$.

查看答案和解析>>

同步练习册答案