精英家教网 > 高中数学 > 题目详情
7.若△ABC边BC,CA,AB上的高分别为ha、hb、hc,且ha:hb:hc=6:4:3,则tanC=-$\sqrt{15}$.

分析 由已知设a=2k,b=3k,c=4k,k>0,利用余弦定理能求出cosC,由此能求出tanC.

解答 解:∵△ABC边BC,CA,AB上的高分别为ha、hb、hc,且ha:hb:hc=6:4:3,
$S△ABC=\frac{1}{2}a{h}_{a}=\frac{1}{2}b{h}_{b}=\frac{1}{2}c{h}_{c}$,
∴$a:b:c=\frac{1}{{h}_{a}}:\frac{1}{{h}_{b}}:\frac{1}{{h}_{c}}$=$\frac{1}{6}:\frac{1}{4}:\frac{1}{3}$=2:3:4,
设a=2k,b=3k,c=4k,k>0,
则cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{4{k}^{2}+9{k}^{2}-16{k}^{2}}{2×2k×3k}$=-$\frac{1}{4}$,
∴sinC=$\sqrt{1-\frac{1}{16}}$=$\frac{\sqrt{15}}{4}$,
tanC=$\frac{sinC}{cosC}$=$\frac{\frac{\sqrt{15}}{4}}{-\frac{1}{4}}$=-$\sqrt{15}$.
故答案为:-$\sqrt{15}$.

点评 本题考查正切函数的求法,是中档题,解题时要认真审题,注意余弦定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知正项等比数列{an},其前n项和为Sn,ak-1=2,ak•ak+2=a${\;}_{5}^{2}$=64,则S10等于(  )
A.410-1B.$\frac{{4}^{10}-1}{3}$C.210-1D.$\frac{{2}^{10}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.幂函数的图象过点(5,$\sqrt{5}$),则它的单调递增区间是(  )
A.[0,+∞)B.[-1,+∞)C.(-∞,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,四边形ABCD和ADPQ均为长方形,它们所在的平面互相垂直,且AB=AQ=$\frac{1}{2}$AD,E为BC的中点,则异面直线BQ与AE所成的角大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.下列结论正确的是①②④
①f(x)=ax-1+2(a>0,且a≠1)的图象经过定点(1,3);
②已知x=log23,4y=$\frac{8}{3}$,则x+2y的值为3;
③若f(x)=x3+ax-6,且f(-2)=6,则f(2)=18;
④f(x)=x($\frac{1}{1-2^x}$-$\frac{1}{2}$)为偶函数;
⑤已知集合A={-1,1},B={x|mx=1},且B⊆A,则m的值为1或-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}满足log3an+2=log3an+1(n∈N*)且a2+a4+a6=9,则log${\;}_{\frac{1}{3}}$(a5+a7+a9)的值是(  )
A.-8B.-$\frac{1}{8}$C.8D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知变量x,y之间具有线性相关关系,其散点图如图所示,则其回归方程可能为(  )
A.$\widehat{y}$=1.5x+2B.$\widehat{y}$=-1.5x+2C.$\widehat{y}$=1.5x-2D.$\widehat{y}$=-1.5x-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知(x,y)满足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{x+y≤1}\end{array}\right.$,则k=$\frac{y}{x+1}$的最大值等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.请在复数集内将x2+2x+2分解成两个一次因式的积.

查看答案和解析>>

同步练习册答案