精英家教网 > 高中数学 > 题目详情
设(2x-3)5=a0+a1x+a2x2+…+a5x5,则|a0|+|a1|+|a2|+…+|a5|=
 
考点:二项式系数的性质
专题:二项式定理
分析:由题意可得,|a0|+|a1|+|a2|+…+|a5|等于(2x+3)5的展开式中各项系数的和,再令x=1,可得(2x+3)5的展开式中各项系数的和.
解答: 解:由于 (2x-3)5=a0+a1x+a2x2+…+a5x5
则|a0|+|a1|+|a2|+…+|a5|等于(2x+3)5的展开式中各项系数的和,
再令x=1,可得(2x+3)5的展开式中各项系数的和为55
故答案为:55
点评:本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知实数x、y满足(x+2)2+y2=1,求z=
y
x
的最小值及取得最小值时x和y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题“?x∈R,x2-ax+1<0”为假命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足
.
zi
1i
.
=1+i,则|z+1-3i|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个空间几何体的主视图和左视图都是矩形,俯视图是一个的圆,尺寸如图,那么这个几何体的侧面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式|x+1|+|x-2|≤5的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数x,不等式|2x+m|+|x-1|≥a恒成立时,若实数a的最大值为3,则实数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若a,b∈R,则以下命题为真的是(  )
A、若a>b,则
1
a
1
b
B、若a>|b|,则
1
a
1
b
C、若a>b,则a2>b2
D、若a>|b|,则a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的两个顶点为A(a,0)、B(0,b),右焦点为F,且F到直线AB的距离等于F到原点的距离,求椭圆离心率的取值范围.

查看答案和解析>>

同步练习册答案