精英家教网 > 高中数学 > 题目详情
一个空间几何体的主视图和左视图都是矩形,俯视图是一个的圆,尺寸如图,那么这个几何体的侧面积为
 
考点:由三视图求面积、体积
专题:空间位置关系与距离
分析:根据三视图判定几何体是圆柱,且圆柱的底面直径为1,高为2.代入圆柱的侧面积公式计算.
解答: 解:由三视图知几何体是圆柱,且圆柱的底面直径为1,高为2,
∴圆柱的底面半径为
1
2

∴圆柱的侧面积S=2π×
1
2
×2=2π.
故答案为:2π.
点评:本题考查了由三视图求几何体的表面积,判断三视图的数据所对应的几何量是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义:满足方程f(x)=x的实数x称为函数f(x)的“不动点”.已知二次函数f(x)=ax2+bx(a≠0),满足f(x+1)为偶函数,且函数f(x)有且仅有一个不动点.
(1)求f(x)的解析式;
(2)若函数g(x)=f(x)+kx2在(0,4)上是增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若1<a<b,求证0<
(b+1)(a-1)
(b-1)(a+1)
<1.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1(a>1)的一个焦点为F,点P在双曲线上,且|
OP
|=|
OF
|(O为坐标原点),则△OPF的面积S=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题正确的是
 

①动点M至两定点A、B的距离之比为常数λ(λ>0且λ≠1).则动点M的轨迹是圆.
②椭圆
x2
a2
+
y2
b2
=1(a>b>0)的离心率e=
2
2
,则b=c(c
为半焦距).
③双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的焦点到渐近线的距离为b.
④知抛物线y2=2px上两点A(x1,y1),B(x2,y2)且OA⊥OB(O为原点),则y1y2=-p2
A.②③④B.①④C.①②③D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:

设(2x-3)5=a0+a1x+a2x2+…+a5x5,则|a0|+|a1|+|a2|+…+|a5|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知θ∈(0,2π) 且sinθ<tanθ<cotθ,则θ的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

3+2i
2-3i
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2+ax+3
(1)当x∈R时,f(x)≥a恒成立,求实数a的取值范围;
(2)当x∈(-∞,1)时,f(x)≥a恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案