精英家教网 > 高中数学 > 题目详情
已知θ∈(0,2π) 且sinθ<tanθ<cotθ,则θ的取值范围是
 
考点:三角函数线
专题:三角函数的求值,三角函数的图像与性质
分析:先利用θ∈(0,2π),sinθ<tanθ,确定θ的范围;再根据tanθ<cotθ,确定θ的范围,综合可得θ的范围.
解答: 解:∵θ∈(0,2π),sinθ<tanθ,
∴θ∈(0,
π
2
)∪(π,
2
).
∵tanθ<cotθ,∴θ∈(0,
π
4
)∪(π,
4
),
综上可得,θ∈(
4
2
),
故答案为:(0,
π
4
)∪(π,
4
).
点评:本题考查三角函数的性质,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=|x+3|-m,m∈R,且f(x-2)≤0的解集为[-3,1].
(Ⅰ)求m的值;
(Ⅱ)已知a,b,c都是正数,且a+b+c=m,求证:
1
a+b
+
1
b+c
+
1
c+a
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

①一个命题的逆命题为真,它的否命题也一定为真;
②在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件.
x>1
y>2
x+y>3
xy>2
的充要条件;
④“am2<bm2”是“a<b”的充分必要条件.
以上说法中,判断正确的有
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个空间几何体的主视图和左视图都是矩形,俯视图是一个的圆,尺寸如图,那么这个几何体的侧面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设m<x1<x2<4m,则
x1+x2
2
的取值范围是
 
x1-x2
2
的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于任意实数x,不等式|2x+m|+|x-1|≥a恒成立时,若实数a的最大值为3,则实数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1:(m+1)x+y=2和l2:y=-x+1,若l1∥l2,则m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在ABC中,a,b,c分别为角A,B,C的对边,且角A=60°,若S△ABC=
15
3
4
,且5sinB=3sinC,则ABC的周长等于(  )
A、8+
19
B、14
C、10+3
5
D、18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)满足f(x)=loga
3-x
3+x
(a>0且a≠1),证明当a>1时函数f(x)在其定义域内是单调递增函数.

查看答案和解析>>

同步练习册答案