精英家教网 > 高中数学 > 题目详情
3.如图,△ABC内接于直径为BC的圆O,过点作圆O的切线交CB的延长线于点P,AE交BC和圆O于点D、E,且$\frac{AC}{AB}$=$\frac{CD}{DB}$,若PA=2PB=10.
(Ⅰ)求证:AC=2AB;
(Ⅱ)求AD•DE的值.

分析 (Ⅰ)通过证明△ABP∽△CAP,然后证明AC=2AB;
(Ⅱ)利用切割线定理以及相交弦定理直接求AD•DE的值.

解答 (Ⅰ)证明:∵PA是圆O的切线,∴∠PAB=∠ACB.
又∠P是公共角
∴△ABP∽△CAP…(4分)
∴$\frac{AC}{AB}=\frac{AP}{PB}=2$,
∴AC=2AB…(6分)
(Ⅱ)解:由切割线定理得:PA2=PB•PC∴PC=20
又PB=5,∴BC=15…(9分)
又∵$\frac{AC}{AB}=\frac{CD}{DB}=2$
∴CD=2DB,
∴CD=10,DB=5…(11分)
又由相交弦定理得:AD•DE=CD•DB=50…(13分)

点评 本题主要考查与圆有关的比例线段、相似三角形的判定及切线性质的应用.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知Sn=|n-1|+2|n-2|+3|n-3|+…+10|n-10|,n∈N*,则Sn的最小值为(  )
A.108B.96C.120D.112

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.不等式|2x-1|>x+2的解集是(  )
A.(-$\frac{1}{3}$,3)B.(-∞,-$\frac{1}{3}}$)∪(3,+∞)C.(-∞,-3)∪(${\frac{1}{3}$,+∞)D.(-3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设非零向量$\overrightarrow m$,$\overrightarrow n$,θ=<$\overrightarrow m,\overrightarrow n>$,规定:$\overrightarrow m$?$\overrightarrow n$=|$\overrightarrow m$||$\overrightarrow n$|sinθ,点M,N分别是椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的上顶点和右顶点,且$\overrightarrow{OM}$?$\overrightarrow{ON}$=$\sqrt{3}$,离心率e=$\frac{{\sqrt{6}}}{3}$.
(1)求椭圆C的方程;
(2)设椭圆C与直线y=kx+m交于不同两点P,Q,又点A(0,-1),当|AP|=|AQ|时,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知f(x)=lnx+ax2-ax+5,a∈R.
(1)若函数f(x)在x=1处有极值,求实数a的值;
(2)若函数f(x)在区间(0,+∞)内单调递增,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知直线2mx-y-8m-3=0和圆(x-3)2+(y+6)2=25相交于A,B两点,当弦AB最短时,m的值为(  )
A.-$\frac{1}{6}$B.-6C.6D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若函数f(x)=$\left\{\begin{array}{l}{alnx-{x}^{2}-2(x>0)}\\{x+\frac{1}{x}+a(x<0)}\end{array}$的最大值为f(-1),则实数a的取值范围(  )
A.[0,2e2]B.[0,2e3]C.(0,2e2]D.(0,2e3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,四边形ABCD为正方形,以AB为直径 的半圆E与以C为圆心CB为半径的圆弧相交于点P,过点P作圆C的切线PF交AD于点F,连接CP.
(Ⅰ)证明:CP是圆E的切线;
(Ⅱ)求$\frac{AF}{PF}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知方程lnx-kx=0有两个不相等的实数根,则实数k取值范围为(  )
A.(-∞,e-1B.(0,e-1C.(e,+∞)D.(0,e)

查看答案和解析>>

同步练习册答案