精英家教网 > 高中数学 > 题目详情
10.如图,四边形ABCD为正方形,以AB为直径 的半圆E与以C为圆心CB为半径的圆弧相交于点P,过点P作圆C的切线PF交AD于点F,连接CP.
(Ⅰ)证明:CP是圆E的切线;
(Ⅱ)求$\frac{AF}{PF}$的值.

分析 (Ⅰ)证明:CP是圆E的切线,只需证明CP⊥PE即可;
(Ⅱ)证明FD=FP,利用勾股定理,即可求$\frac{AF}{PF}$的值.

解答 (Ⅰ)证明:连接PB,PE,则EB=EP,
∴∠EPB=∠EBP.
∵CP=CB,
∴∠CPB=∠CBP,
∴∠CPB+∠EPB=∠CBP+∠EBP=90°,
∴CP⊥PE,
∵PE是圆E的半径,
∴CP是圆E的切线;
(Ⅱ)解:由题意,PF⊥CP,EP⊥CP,
∴E,P,F三点共线,
∵FD为圆的切线,
∴FD=FP.
∵PE=EB,
∴Rt△EAF中,AF2+AE2=EF2
∴(AD-PF)2+($\frac{AD}{2}$)2=(PF+$\frac{AD}{2}$)2
∴AD=3PF,
∴AF=2PF,
∴$\frac{AF}{PF}$=2.

点评 本题考查圆的切线的证明,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.2015年10月29日夜里,全面放开二胎的消息一公布,迅速成为人们热议的热点,为此,某网站进行了一次民意调查,参与调查的网民中,年龄分布情况如图所示:
(1)若以频率代替概率,从参与调查的网民中随机选取1人进行访问,求其年龄恰好在[30,40)之间的概率;
(2)若从参与调查的网民中按照分层抽样的方法选取100人,其中30岁以下计划要二胎的有25人,年龄不低于30岁的计划要二胎的有30人,请以30岁为分界线,以是否计划要二胎的人数建立分类变量.
①填写下列2×2列联表:
计划要二胎不计划要二胎合计
30岁以下
不低于30岁
合计
②试分析是否有90%以上的把握认为计划要二胎与年龄有关?
P(K2≥k00.150.100.05
k02.0722.7063.841
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,△ABC内接于直径为BC的圆O,过点作圆O的切线交CB的延长线于点P,AE交BC和圆O于点D、E,且$\frac{AC}{AB}$=$\frac{CD}{DB}$,若PA=2PB=10.
(Ⅰ)求证:AC=2AB;
(Ⅱ)求AD•DE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.己知P是椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上一点,F1、F2分别为左、右两个焦点,∠F1PF2=60°,S${\;}_{△{F}_{1}P{F}_{2}}$=12$\sqrt{3}$,则b=6.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.正方形ABCD所在平面外一点P,有PA=PB=PC=PD=AB,则二面角P-AB-C的余弦值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=|lnx|,则函数y=f(x)-f(e-x)的零点的个数为(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设a、b∈R,则不等式$\frac{|a+b|}{|a|+|b|}$≤1成立的条件为a,b不同时为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.圆C经过直线x+y-1=0与x2+y2=4的交点,且圆C的圆心为(-2,-2),则过点(2,4)向圆C作切线,所得切线方程为x=2和5x-12y+38=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.x,y满足约束条件$\left\{\begin{array}{l}x+y-2≤0\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,当且仅当x=0,y=2时z=y-ax取得最大值,则实数a的取值范围是(  )
A.-1<a<2B.a<-1或0≤a<2C.-1<a<$\frac{1}{2}$D.a<-1或0≤a<$\frac{1}{2}$

查看答案和解析>>

同步练习册答案