精英家教网 > 高中数学 > 题目详情
15.某学校用系统抽样的方法,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一个号码,若抽到的是3号,则从11~20中应抽取的号码是(  )
A.14B.13C.12D.11

分析 根据系统抽样的定义进行计算即可得到结论.

解答 解:根据系统抽样的定义可知抽取的号码构成以3为首项,公差d=10的等差数列{an},
∴则an=3+10(n-1)=10n-7,
由11≤10n-7≤20,解得18≤10n≤27,
即1.8≤n≤2.7,
即n=2,即从11~20中应抽取的号码为13,
故选:B.

点评 本题主要考查系统抽样的应用,根据系统抽样转化为等差数列是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.0-9共10个数字,可以组成以下多少个无重复数字的数.
(1)五位数;
(2)大于或等于30000的五位数;
(3)在无重复数字的五位数中,50124从大到小排第几位?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.有4名男生和2名女生,从中选出3人担任3门不同学科的课代表,分别求符合下列条件的选法数.
(1)至少有一个女生担任课代表;
(2)某女生一定要担任语文课代表;
(3)某男生必须包括在内,但不担任数学课代表.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设方程2x|lnx|=1有两个不等的实根x1和x2,则(  )
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ex-ax,g(x)=$\frac{lnx}{x}$.
(1)若函数f(x)=ex-ax(a>0)有且只有一个零点,求实数a的值;
(2)?x0∈(0,+∞),使不等式f(x0)+g(x0)-ex0≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买该食品4袋,能获奖的概率为(  )
A.$\frac{4}{27}$B.$\frac{8}{27}$C.$\frac{4}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.将2本相同的小说,2本相同的画册全部分给3名同学,每名同学至少1本,则不同的分法有(  )
A.6B.9C.12D.15

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(2,-1),若$\overrightarrow{a}$∥($\overrightarrow{b}$-$\overrightarrow{a}$),则实数m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知命题p:?m∈[-1,1],不等式${a^2}-5a-3≥\sqrt{{m^2}+8}$;命题q:?x∈R,使不等式x2+ax+2≤0成立.若p∨q是真命题,¬q是真命题,求a的取值范围.

查看答案和解析>>

同步练习册答案