精英家教网 > 高中数学 > 题目详情
7.将2本相同的小说,2本相同的画册全部分给3名同学,每名同学至少1本,则不同的分法有(  )
A.6B.9C.12D.15

分析 分三类,有一个人分到一本小说和一本画册,有一个人分到两本画册,有一个人分到两本小说,根据分类计数原理可得.

解答 解:第一类:有一个人分到一本小说和一本画册,这种情况下的分法有:先将一本小说和一本画册分到一个人手上,有3种分法,将剩余的1本小说,1本诗集分给剩余2个同学,有2种分法,那共有3×2=6种
第二类,有一个人分到两本画册,这种情况下的分法有:先将两本画册分到一个人手上,有3种情况,将剩余的2本小说分给剩余2个人,只有一种分法.那共有:3×1=3种,
第三类,有一个人分到两本小说,这种情况的分法同上,共有:3×1=3种,
综上所述:总共有:6+3+3=12种分法,
故选:C.

点评 本题考查了分类和分步计数原理,关键是分类,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{x}{lnx}$+mx(m为常数).
(1)若y=f(x)在x=e2处的切线与直线4x+9y-2016=0垂直,求y=f(x)的单调区间;
(2)若不等式f(x)≤$\frac{{e}^{2}}{2}$在[e,e2]上值成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=xlnx+ax2-3,且f'(1)=-1,
(1)求f(x)的解析式;
(2)若对于任意x∈(0,+∞),都有f(x)-mx≤-3,求m的最小值;
(3)证明:函数y=f(x)-xex+x2的图象在直线y=-2x-3的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某学校用系统抽样的方法,从全校500名学生中抽取50名做问卷调查,现将500名学生编号为1,2,3,…,500,在1~10中随机抽地抽取一个号码,若抽到的是3号,则从11~20中应抽取的号码是(  )
A.14B.13C.12D.11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知△ABC的外接圆的圆心为O,若$\overrightarrow{AB}$+$\overrightarrow{AC}$=2$\overrightarrow{AO}$,且|${\overrightarrow{AC}}$|=|${\overrightarrow{AO}}$|,则$\overrightarrow{AB}$与$\overrightarrow{BC}$的夹角为150°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.一个化肥厂生产甲、乙两种混合肥料,生产1车皮甲种肥料的主要原料是磷酸盐4t,硝酸盐18t,可获利10000元,生产一车皮乙种肥料所需的主要原料是磷酸盐是1t,硝酸盐15t,可获利5000元,现库存磷酸盐15t,硝酸盐66t,则安排甲、乙两种肥料的生产分别是多少时,才能获得的最大利润(  )
A.-3,1B.2,2C.2,1D.1,3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.命题“a,b∈R,若a2+b2=0,则a=b=0”的逆否命题是(  )
A.a,b∈R,若a≠b≠0,则a2+b2=0B.a,b∈R,若a=b≠0,则a2+b2≠0
C.a,b∈R,若a≠0且b≠0,则a2+b2≠0D.a,b∈R,若a≠0或b≠0,则a2+b2≠0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角是60°,|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,|x$\overrightarrow{a}$+y$\overrightarrow{b}$|=$\sqrt{3}$(x,y∈R),则|x$\overrightarrow{a}$-y$\overrightarrow{b}$|的最大值是(  )
A.1B.$\sqrt{3}$C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.椭圆$\frac{x^2}{6}+\frac{y^2}{9}=1$的焦点坐标为(0,$\sqrt{3}$),(0,-$\sqrt{3}$).

查看答案和解析>>

同步练习册答案