精英家教网 > 高中数学 > 题目详情

若集合A1,A2,…,An满足A1∪A2∪…∪An=A,则称A1,A2,…,An为集合A的一种拆分.已知:
①当A1∪A2={a1,a2,a3}时,有33种拆分;
②当A1∪A2∪A3={a1,a2,a3,a4}时,有74种拆分;
③当A1∪A2∪A3∪A4={a1,a2,a3,a4,a5}时,有155种拆分;
……
由以上结论,推测出一般结论:
当A1∪A2∪…∪An={a1,a2,a3,…,an+1}时,有    种拆分.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

将1,2,3, ,9这9个正整数分别写在三张卡片上,要求每一张卡片上的任意两数之差都不在这张卡片上.现在第一张卡片上已经写有1和5,第二张卡片上写有2,第三张卡片上写有3,则6应该写在第 张卡片上;第三张卡片上的所有数组成的集合是 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

用数学归纳法证明n(ab是非负实数,n∈N)时,假设n
k命题成立之后,证明nk+1命题也成立的关键是________________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

对于大于1的自然数的三次幂可用奇数进行以下方式的“分裂”:.仿此,若的“分裂数”中有一个是2015,则     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

)在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:
k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)],
由此得1×2=(1×2×3-0×1×2),
2×3=(2×3×4-1×2×3),…,
n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)].
相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2).
类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为    .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

如图,三角形数阵满足:

(1)第n行首尾两数均为n;
(2)表中的递推关系类似杨辉三角4则第n行(n≥2)第2个数是____.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知…,若(a,t均为正实数),则类比以上等式,可推测a,t的值,a+t=      .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在直角三角形中,,过边的高,有下列结论。请利用上述结论,类似地推出在空间四面体中,若点到平面的高为,则          .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

观察下列等式:
=1;
=12;
=39;
……
则当m<n且m,n∈N时,
+…+=________(最后结果用m,n表示).

查看答案和解析>>

同步练习册答案