精英家教网 > 高中数学 > 题目详情

)在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:
k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)],
由此得1×2=(1×2×3-0×1×2),
2×3=(2×3×4-1×2×3),…,
n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)].
相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2).
类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为    .

n(n+1)(n+2)(n+3)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

下面是按照一定规律画出的一列“树型”图:

设第个图有个树枝,则之间的关系是    

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

若集合A1,A2,…,An满足A1∪A2∪…∪An=A,则称A1,A2,…,An为集合A的一种拆分.已知:
①当A1∪A2={a1,a2,a3}时,有33种拆分;
②当A1∪A2∪A3={a1,a2,a3,a4}时,有74种拆分;
③当A1∪A2∪A3∪A4={a1,a2,a3,a4,a5}时,有155种拆分;
……
由以上结论,推测出一般结论:
当A1∪A2∪…∪An={a1,a2,a3,…,an+1}时,有    种拆分.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

观察下列等式:
(1+1)=2×1
(2+1)(2+2)=22×1×3
(3+1)(3+2)(3+3)=23×1×3×5

照此规律,第n个等式可为______________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

过点作曲线的切线,切点为,设轴上的投影是点,过点再作曲线的切线,切点为,设轴上的投影是点,…,依次下去,得到第个切点.则点的坐标为     

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

n个连续自然数按规律排列下表:
0  3 → 4  7 → 8  11…
↓  ↑ ↓   ↑  ↓  ↑
1 → 2  5 → 6  9 → 10
根据规律,从2010到2012箭头方向依次为________.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

下表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i行第j列的数为aij(i≥j,i,j∈N*),则a53等于   ,amn=   (m≥3).

,
,,

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

在如下数表中,已知每行、每列中的数都成等差数列,

 
第1列
第2列
第3列

第1行
1
2
3

第2行
2
4
6

第3行
3
6
9






那么位于表中的第n行第n+1列的数是    .

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

对大于或等于2的自然数mn次方幂有如下分解式:
22=1+3 32=1+3+5 42=1+3+5+7…
23=3+5 33=7+9+11…
24=7+9…
此规律,54的分解式中的第三个数为________.

查看答案和解析>>

同步练习册答案