分析 (1)根据函数成立的条件结合对数函数的性质进行求解即可.
(2)根据函数奇偶性的定义进行判断
(3)根据复合函数单调性之间的关系进行求解.
解答 解:(1)由题意得$\sqrt{2}sin(x-\frac{π}{4})>0$,即$sin(x-\frac{π}{4})>0$,
所以$2kπ<x-\frac{π}{4}<2kπ+π$,
所以$2kπ+\frac{π}{4}<x<2kπ+\frac{5π}{4}$
因此f(x)的定义域为$(2kπ+\frac{π}{4},2kπ+\frac{5π}{4})(k∈Z)$…(2分)
又因为$0<sin(x-\frac{π}{4})≤1$,所以$0<\sqrt{2}sin(x-\frac{π}{4})≤\sqrt{2}$,…(3分)
再考察$y={log_{\frac{1}{2}}}t(0<t≤\sqrt{2})$的图象,可知$y≥-\frac{1}{2}$,
所以f(x)的值域为$[-\frac{1}{2},+∞)$…(5分)
(2)由(1)知f(x)的定义域不关于原点对称,故f(x)是非奇非偶函数.…(8分)
(3)由题意可知$2kπ+\frac{π}{2}<x-\frac{π}{4}<2kπ+π$…(10分)
即$2kπ+\frac{3π}{4}<x<2kπ+\frac{5π}{4}$,
所以f(x)的单调增区间为$(2kπ+\frac{3π}{4},2kπ+\frac{5π}{4})(k∈Z)$…(12分)
点评 本题主要考查函数定义域,值域,单调性,奇偶性的求解和判断,根据对数函数的性质以及复合函数单调性之间的关系是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | 2k-1 | B. | 2k-1 | C. | 2k | D. | 2k+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m>n | B. | m<n | C. | m=n | D. | m≤n |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com