精英家教网 > 高中数学 > 题目详情
1.将一个周长为18的矩形ABCD,以一边长为侧棱,折成一个正三棱柱(底面为正三角形,侧棱与底面垂直),当这个正三棱柱的体积最大时,它的外接球的体积为$\frac{43}{54}\sqrt{129}$π.

分析 正三棱柱的底面边长为x,高为y,则3x+y=9,0<x<3,表示正三棱柱的体积,利用基本不等式求最值,求出正三棱柱的外接球的半径,即可求出外接球的体积.

解答 解:设正三棱柱的底面边长为x,高为y,则3x+y=9,0<x<3,
正三棱柱的体积V=$\frac{\sqrt{3}}{4}{x}^{2}y$=$\frac{3\sqrt{3}}{4}{x}^{2}(3-x)$=3$\sqrt{3}$$•\frac{1}{2}x•\frac{1}{2}x•(3-x)$≤3$\sqrt{3}$•($\frac{\frac{1}{2}x+\frac{1}{2}x+3-x}{3}$)3=3$\sqrt{3}$,
当且仅当x=2时,等号成立,此时y=3,
可知正三棱柱的外接球的球心是其上下底面中心连线的中点,则半径为$\sqrt{(\frac{2\sqrt{3}}{3})^{2}+(\frac{3}{2})^{2}}$=$\sqrt{\frac{43}{12}}$,
∴它的外接球的体积为$\frac{4}{3}π$•($\sqrt{\frac{43}{12}}$)3=$\frac{43}{54}\sqrt{129}$π.
故答案为:$\frac{43}{54}\sqrt{129}$π.

点评 本题考查外接球的体积,考查基本不等式的运用,确定正三棱柱的外接球的半径是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.若函数f(x)=ax3-bx+4,当x=2时,函数f(x)有极值-$\frac{4}{3}$.
(1)求函数的解析式;
(2)若g(x)=f(x)-k有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知某正四面体的内切球体积是1,则该正四面体的外接球的体积是27.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知,$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$同一平面内的三个向量,其中$\overrightarrow a$=(2,1).
(1)若|$\overrightarrow c$|=2$\sqrt{5}$,且$\overrightarrow c$∥$\overrightarrow a$,求$\overrightarrow c$的坐标;
(2)若|$\overrightarrow b$|=$\frac{{\sqrt{5}}}{2}$,且$\overrightarrow a$+2$\overrightarrow b$与2$\overrightarrow a$-$\overrightarrow b$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.两条平行线4x+3y+1=0与8x+6y-9=0的距离是$\frac{11}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=log${\;}_{\frac{1}{2}}}$[$\sqrt{2}$sin(x-$\frac{π}{4}$)].
(1)求f(x)的定义域和值域;
(2)说明f(x)的奇偶性;
(3)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在三棱锥A-BCD中,△ABC与△BCD都是边长为6的正三角形,平面ABC⊥平面BCD,则该三棱锥的外接球的体积为(  )
A.5$\sqrt{15}$πB.60πC.60$\sqrt{15}$πD.20$\sqrt{15}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.有下列说法:
①y=sinx+cosx在区间(-$\frac{3π}{4}$,$\frac{π}{4}$)内单调递增;
②存在实数α,使sinαcosα=$\frac{3}{2}$;
③y=sin($\frac{5π}{2}$+2x)是奇函数;
④x=$\frac{π}{8}$是函数y=cos(2x+$\frac{3π}{4}$)的一条对称轴方程.
其中正确说法的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.$\int_{\frac{π}{2}}^{\frac{3π}{2}}$sinxdx=0.

查看答案和解析>>

同步练习册答案