精英家教网 > 高中数学 > 题目详情
9.已知,$\overrightarrow a$、$\overrightarrow b$、$\overrightarrow c$同一平面内的三个向量,其中$\overrightarrow a$=(2,1).
(1)若|$\overrightarrow c$|=2$\sqrt{5}$,且$\overrightarrow c$∥$\overrightarrow a$,求$\overrightarrow c$的坐标;
(2)若|$\overrightarrow b$|=$\frac{{\sqrt{5}}}{2}$,且$\overrightarrow a$+2$\overrightarrow b$与2$\overrightarrow a$-$\overrightarrow b$垂直,求$\overrightarrow a$与$\overrightarrow b$的夹角θ.

分析 (1)$设\overrightarrow c=({x,y})$,根据向量的平行和向量的模得到关于x,y的方程组,解得即可,
(2)根据向量的垂直和向量的夹角公式,即可求出.

解答 解:(1)$设\overrightarrow c=({x,y})$,
∵$|{\overrightarrow c}|=2\sqrt{5}$,
∴$\sqrt{{x^2}+{y^2}}=2\sqrt{5}$,
∴x2+y2=20.
∵$\overrightarrow c∥\overrightarrow a,而\overrightarrow a=(2,1)$,
∴x-2y=0,
∴x=2y,
$由\left\{\begin{array}{l}x=2y\\{x^2}+{y^2}=20\end{array}\right.⇒\left\{\begin{array}{l}x=-4\\ y=-2\end{array}\right.或\left\{\begin{array}{l}x=4\\ y=2\end{array}\right.$,
∴$\overrightarrow{c}$=(-4,-2)或,$\overrightarrow{c}$=(4,2)
(2)∵$({\overrightarrow a+2\overrightarrow b})⊥({2\overrightarrow a-\overrightarrow b})$,
∴$({\overrightarrow a+2\overrightarrow b})•({2\overrightarrow a-\overrightarrow b})=0,即2{\overrightarrow a^2}+3\overrightarrow a•\overrightarrow b-2{\overrightarrow b^2}=0$,
∴$2{|{\overrightarrow a}|^2}+3\overrightarrow a•\overrightarrow b-2{|{\overrightarrow b}|^2}=0(*)$,
$将|\overrightarrow a|=\sqrt{5},|\overrightarrow b|=\frac{{\sqrt{5}}}{2}代入(*)式得2×5+3\overrightarrow a•\overrightarrow b-2×\frac{5}{4}=0⇒\overrightarrow a•\overrightarrow b=-\frac{5}{2}$,
∴$cosθ=\frac{\overrightarrow a•\overrightarrow b}{|\overrightarrow a|•|\overrightarrow b|}=-1,又∵θ∈[{0,π}]$,
∴θ=π.

点评 本题考查平面向量的坐标运算和数量积判断两个平面垂直的条件的灵活运用,是基础题.解题时要认真审题,仔细解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.若数列{an}满足:a1=1,an+1+an=4n.
(Ⅰ)求{an}的通项公式;
(Ⅱ)记{an}的前n项和为Sn,证明$\sum_{i=1}^{n}$$\frac{1}{9{S}_{i}-1}$<$\frac{5}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.存在函数f (x)满足:对于任意的x∈R都有f(x2+2x)=|x+a|,则a=(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.点A(m,-5)到直线l:y=-2的距离是3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.甲、乙两人各自独立地进行射击比赛,甲、乙两人各射击一次,击中目标的概率分别是$\frac{2}{3}$和$\frac{3}{4}$,假设每次射击是否击中目标相互之间没有影响.
(Ⅰ)求甲射击3次,至少有1次未击中目标的概率;
(Ⅱ)求两人各射击3次,甲恰好击中目标2次且乙恰好击中目标1次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若m=$\sqrt{3}$+$\sqrt{5}$,n=$\sqrt{2}$+$\sqrt{6}$,则m、n的大小关系是(  )
A.m>nB.m<nC.m=nD.m≤n

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将一个周长为18的矩形ABCD,以一边长为侧棱,折成一个正三棱柱(底面为正三角形,侧棱与底面垂直),当这个正三棱柱的体积最大时,它的外接球的体积为$\frac{43}{54}\sqrt{129}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图△ABC为正三角形,且BC=CD=2,CD⊥BC,将△ABC沿BC翻折
(1)若点A的射影在BD,求AD的长;
(2)若点A的射影在△BCD内,且AB与面ACD所成的角的正弦值为$\frac{2\sqrt{22}}{11}$,求AD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知某运动员每次投篮命中的概率低于40%.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了20组随机数:
458     569    683     907     966    191     925     271     932    812
431     257    393     027     556     488    730     113     537   989
据此估计,该运动员三次投篮恰有两次命中的概率为0.25.

查看答案和解析>>

同步练习册答案