分析 (1)$设\overrightarrow c=({x,y})$,根据向量的平行和向量的模得到关于x,y的方程组,解得即可,
(2)根据向量的垂直和向量的夹角公式,即可求出.
解答 解:(1)$设\overrightarrow c=({x,y})$,
∵$|{\overrightarrow c}|=2\sqrt{5}$,
∴$\sqrt{{x^2}+{y^2}}=2\sqrt{5}$,
∴x2+y2=20.
∵$\overrightarrow c∥\overrightarrow a,而\overrightarrow a=(2,1)$,
∴x-2y=0,
∴x=2y,
$由\left\{\begin{array}{l}x=2y\\{x^2}+{y^2}=20\end{array}\right.⇒\left\{\begin{array}{l}x=-4\\ y=-2\end{array}\right.或\left\{\begin{array}{l}x=4\\ y=2\end{array}\right.$,
∴$\overrightarrow{c}$=(-4,-2)或,$\overrightarrow{c}$=(4,2)
(2)∵$({\overrightarrow a+2\overrightarrow b})⊥({2\overrightarrow a-\overrightarrow b})$,
∴$({\overrightarrow a+2\overrightarrow b})•({2\overrightarrow a-\overrightarrow b})=0,即2{\overrightarrow a^2}+3\overrightarrow a•\overrightarrow b-2{\overrightarrow b^2}=0$,
∴$2{|{\overrightarrow a}|^2}+3\overrightarrow a•\overrightarrow b-2{|{\overrightarrow b}|^2}=0(*)$,
$将|\overrightarrow a|=\sqrt{5},|\overrightarrow b|=\frac{{\sqrt{5}}}{2}代入(*)式得2×5+3\overrightarrow a•\overrightarrow b-2×\frac{5}{4}=0⇒\overrightarrow a•\overrightarrow b=-\frac{5}{2}$,
∴$cosθ=\frac{\overrightarrow a•\overrightarrow b}{|\overrightarrow a|•|\overrightarrow b|}=-1,又∵θ∈[{0,π}]$,
∴θ=π.
点评 本题考查平面向量的坐标运算和数量积判断两个平面垂直的条件的灵活运用,是基础题.解题时要认真审题,仔细解答.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m>n | B. | m<n | C. | m=n | D. | m≤n |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com