【题目】一个正方体的平面展开图及该正方体的直观图的示意图如图所示.
![]()
(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)
(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.
(Ⅲ)证明:直线DF
平面BEG
【答案】(Ⅰ)见解析; (Ⅱ)见解析;(Ⅲ)见解析.
【解析】
(Ⅰ)点F,G,H的位置如图所示
![]()
(Ⅱ)平面BEG∥平面ACH.证明如下
因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG
又FG∥EH,FG=EH,所以BC∥EH,BC=EH
于是BCEH为平行四边形
所以BE∥CH
又CH
平面ACH,BE
平面ACH,
所以BE∥平面ACH
同理BG∥平面ACH
又BE∩BG=B
所以平面BEG∥平面ACH
(Ⅲ)连接FH
因为ABCD-EFGH为正方体,所以DH⊥平面EFGH
因为EG
平面EFGH,所以DH⊥EG
又EG⊥FH,EG∩FH=O,所以EG⊥平面BFHD
又DF
平面BFDH,所以DF⊥EG
同理DF⊥BG
又EG∩BG=G
所以DF⊥平面BEG.
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
与点
.
(1)求椭圆
的方程;
(2)设直线
过定点
,且斜率为
,若椭圆
上存在
,
两点关于直线
对称,
为坐标原点,求
的取值范围及
面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】扇形AOB中心角为
,所在圆半径为
,它按如图(Ⅰ)(Ⅱ)两种方式有内接矩形CDEF.
![]()
(1)矩形CDEF的顶点C、D在扇形的半径OB上,顶点E在圆弧AB上,顶点F在半径OA上,设
;
(2)点M是圆弧AB的中点,矩形CDEF的顶点D、E在圆弧AB上,且关于直线OM对称,顶点C、F分别在半径OB、OA上,设
;
试研究(1)(2)两种方式下矩形面积的最大值,并说明两种方式下哪一种矩形面积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点
,点
,点
,动圆
与
轴相切于点
,过点
的直线
与圆
相切于点
,过点
的直线
与圆
相切于点
(
均不同于点
),且
与
交于点
,设点
的轨迹为曲线
.
(1)证明:
为定值,并求
的方程;
(2)设直线
与
的另一个交点为
,直线
与
交于
两点,当
三点共线时,求四边形
的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若异面直线
所成的角是
,则以下三个命题:
①存在直线
,满足
与
的夹角都是
;
②存在平面
,满足
,
与
所成角为
;
③存在平面
,满足
,
与
所成锐二面角为
.
其中正确命题的个数为( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)掷两枚质地均匀的骰子,计算点数和为7的概率;
(2)利用随机模拟的方法,试验120次,计算出现点数和为7的频率;
(3)所得频率与概率相差大吗?为什么会有这种差异?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在点
处的切线方程为
.
(1)求
的值;
(2)已知
,当
时,
恒成立,求实数
的取值范围;
(3)对于在
中的任意一个常数
,是否存在正数
,使得
?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(理)已知在平面直角坐标系
中,直线
的参数方程是
(
为参数),以原点为极点,
轴正半轴为极轴建立极坐标,曲线
的极坐标方程
.
(1)判断直线
与曲线
的位置关系;
(2)设
为曲线
上任意一点,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com