【题目】如图,M为△ABC的中线AD的中点,过点M的直线分别交线段AB、AC于点P、Q两点,设,,记.
(1)求的值;
(2)求函数的解析式(指明定义域);
(3)设,,若对任意,总存在,使得成立,求实数a的取值范围.
科目:高中数学 来源: 题型:
【题目】我国古代数学名著《九章算术·商功》中阐述:“斜解立方,得两壍堵。斜解壍堵,其一为阳马,一为鳖臑.阳马居二,鳖臑居一,不易之率也.合两鳖臑三而一,验之以棊,其形露矣.”若称为“阳马”的某几何体的三视图如图所示,图中网格纸上小正方形的边长为1,则对该几何体描述:
①四个侧面都是直角三角形;
②最长的侧棱长为;
③四个侧面中有三个侧面是全等的直角三角形;
④外接球的表面积为.
其中正确的个数为( )
A. 0B. 1
C. 2D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,直线的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线C交于两点.
(1)求直线的普通方程和曲线C的直角坐标方程;
(2)求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是由非负整数组成的无穷数列,该数列前n项的最大值记为,第n项之后的各项的最小值记为,设.
(1)若为,是一个周期为4的数列,写出的值;
(2)设d为非负整数,证明:)的充要条件是是公差为d的等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四面体中,,且两两互相垂直,点是的中心.
(1)求二面角的大小(用反三角函数表示);
(2)过作,垂足为,求绕直线旋转一周所形成的几何体的体积;
(3)将绕直线旋转一周,则在旋转过程中,直线与直线所成角记为,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为F,F关于原点的对称点为P,过F作轴的垂线交抛物线于M,N两点,给出下列三个结论:
①必为直角三角形;
②直线必与抛物线相切;
③的面积为.其中正确的结论是___.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是( )
A. 若直线平面,直线平面,则直线不一定平行于直线
B. 若平面不垂直于平面,则内一定不存在直线垂直于平面
C. 若平面平面,则内一定不存在直线平行于平面
D. 若平面平面,平面平面,,则一定垂直于平面
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的前n项和为,,公差为
若,求数列的通项公式;
是否存在d,n使成立?若存在,试找出所有满足条件的d,n的值,并求出数列的通项公式;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com