精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
25
+
y2
9
=1的两个焦点分别是F1、F2,P为椭圆上的一点,且PF1⊥PF2,则|PF1|•|PF2|的值等于(  )
A、9B、12C、20D、18
考点:椭圆的简单性质
专题:计算题,圆锥曲线的定义、性质与方程
分析:根据椭圆方程易得a=5,b=3,c=4,在△F1PF2中,利用勾股定理可得,|PF1|2+|PF2|2=|F1F2|2,配方并运用椭圆的定义即可解得结果.
解答: 解:解:∵椭圆方程为
x2
25
+
y2
9
=1,
∴a=5,b=3,c=4.
∵P为椭圆上的一点,且PF1⊥PF2
∴|PF1|+|PF2|=2a=10,|PF1|2+|PF2|2=|F1F2|2=82
∴(|PF1|+|PF2|)2-2|PF1|•|PF2|=64,
∴|PF1|•|PF2|=
102-64
2
=18.
故选:D.
点评:本题主要考查椭圆的标准方程和简单几何性质的灵活应用,以及勾股定理的应用.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α∈(
π
2
2
),β∈(0,
π
2
),tanα=
4
3
,sinβ=
3
10
10
,则cos(α+β)=(  )
A、
9
10
50
B、-
3
10
10
C、
10
10
D、
13
10
50

查看答案和解析>>

科目:高中数学 来源: 题型:

下列集合中,只有一个子集的是(  )
A、{x∈R|x2-4=0}
B、{x|x>9或x<3}
C、{(x,y)|x2+y2=0}
D、{x|x>9且x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b∈R,“a>b-1”是“a>b”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

某算法的程序框图如图所示,若输入的a,b值分别为60与32,则执行程序后的结果是(  )
A、0B、4C、7D、28

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x、y满足不等式组
x+4y≥2
x+y≤2
2x-2y≥-1
,则目标函数3x-y的取值范围是(  )
A、[-
1
2
,1]
B、[-
1
2
,6]
C、[-1,6]
D、[-6,
3
2
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(cos2xcosx+sin2xsinx)sinx,x∈R,则函数f(x)性质的以下判断中正确的是(  )
A、函数f(x)的最小正周期为
2
B、函数f(x)的单调增区间是[kπ-
π
2
,kπ+
π
2
],k∈Z
C、函数f(x)的图象关于点(
π
6
,0)对称
D、函数g(x)=f(x-
π
3
)的图象关于直线x=
π
12
对称

查看答案和解析>>

科目:高中数学 来源: 题型:

过三角形OAB的重心G的直线L分别与边OA,OB交于点P,Q,已知
OP
=m倍的
OA
OQ
=n倍的
OB
,则(  )
A、m+n=
3
2
B、m+n=
4
3
C、
1
m
+
1
n
=
3
2
D、
1
m
+
1
n
=3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等比数列{an}中,a1+a2=2,a3+a4=4,则a5+a6=
 

查看答案和解析>>

同步练习册答案