分析 (Ⅰ)利用余弦定理把等号左边进行整理,把cosA和cosC代入.
(Ⅱ)利用正弦定理把(Ⅰ)结论中边转化成角的正弦,进而利用两角和公式化简整理,可求得sinCcosA=3sinAcosC,进而求得tanC和tanA的关系,求得tanC,则C可得.
解答 (Ⅰ)证明:因为2c2-2a2=b2,
所以2ccosA-2acosC=2c•$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$-2a•$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$
=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{b}$-$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{b}$=$\frac{2{c}^{2}-{2a}^{2}}{b}$=b.
(Ⅱ)解:由(Ⅰ)和正弦定理以及sinB=sin(A+C)得
2sinCcosA-2sinAcosC=sinAcosC+cosAsinC,
即sinCcosA=3sinAcosC,
又cosAcosC≠0,所以tanC=3tanA=1,故C=45°.
点评 本题主要考查了正弦定理和余弦定理的运用.解题的关键是对正弦定理和余弦定理能熟练灵活的运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$(π+1) | B. | $\frac{2}{3}$(π+1) | C. | $\frac{4}{3}$(π+$\frac{1}{2}$) | D. | $\frac{2}{3}$(π+$\frac{1}{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③⇒②,①②⇒③ | B. | ①③⇒②,②③⇒① | C. | ①②⇒③,②③⇒① | D. | ①③⇒②,①②⇒③,②③⇒① |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 满意情况 | 不满意 | 比较满意 | 满意 | 非常满意 |
| 人数 | 200 | n | 2100 | 1000 |
| A. | $\frac{7}{15}$ | B. | $\frac{2}{5}$ | C. | $\frac{11}{15}$ | D. | $\frac{13}{15}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com