精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=2sin$({x-\frac{α}{2}})cos({x-\frac{α}{2}})+2\sqrt{3}{cos^2}({x-\frac{α}{2}})-\sqrt{3}$,其图象过点$({\frac{π}{12},0})$,且α∈[0,π].
(I)求α的值及f(x)的最小正周期;
(Ⅱ)若$x∈[{0,\frac{π}{2}}]$,求f(x)的单调增区间.

分析 (I)利用二倍角公式和两角和公式对函数解析式整理化简,进而求得函数的最小正周期;把图象过点代入函数解析式求得cosα的值,进而求得α.
(Ⅱ)利用正弦函数的图象和性质求得函数的单调增区间.

解答 解:(I)f(x)=2sin$({x-\frac{α}{2}})cos({x-\frac{α}{2}})+2\sqrt{3}{cos^2}({x-\frac{α}{2}})-\sqrt{3}$=sin(2x-α)+$\sqrt{3}$cos(2x-α)=2sin(2x-α+$\frac{π}{3}$)
∴函数f(x)的最小正周期T=$\frac{2π}{2}$=π,
∵函数图象过点$({\frac{π}{12},0})$,
∴2sin($\frac{π}{6}$-α+$\frac{π}{3}$)=0,
∴cosα=0,
∵α∈[0,π],
∴α=$\frac{π}{2}$.
(Ⅱ)由(I)知f(x)=2sin(2x-$\frac{π}{6}$),
由-$\frac{π}{2}$+2kπ≤2x-$\frac{π}{6}$≤$\frac{π}{2}$+2kπ,k∈Z,
得-$\frac{π}{6}$+kπ≤x≤$\frac{π}{3}$+kπ,k∈Z,
∵$x∈[{0,\frac{π}{2}}]$,
∴f(x)的单调增区间为[0,$\frac{π}{3}$].

点评 本题主要考查了两角和公式,二倍角公式的应用,三角函数图象与性质的运用.考查学生对基础知识的掌握和熟练应用能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=mlnx+$\frac{2m}{x}$-$\frac{{e}^{x}}{{x}^{2}}$
(1)若m≤0,求函数f(x)的单调区间;
(2)若函数f(x)在(0,2)内存在两个极值点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若集合A={x|2x+1>0},B={x|(x-1)2≤4},则A∩B=(-$\frac{1}{2}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤4\\ y≥k\end{array}$且z=2x+y的最小值为-3,则k=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是减函数,若$f({ln\frac{n}{m}})-f(1)>0$,则$\frac{{{m^2}+{n^2}}}{mn}$的取值范围是(  )
A.[2,+∞)B.[2,e)C.$({e+\frac{1}{e},+∞})$D.$[{2,e+\frac{1}{e}})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知区域D:$\left\{{\begin{array}{l}{x+y-\sqrt{2}≤0}\\{x-y+\sqrt{2}≥0}\\{y≥0}\end{array}}$,在D内任取一点p,则点p落在单位圆x2+y2=1内的概率为$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.i为虚数单位,(1+i)$\overline{z}$=(1-i)2,则|z|=(  )
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,A,B,C所对边分别为a,b,c.2c2-2a2=b2
(Ⅰ)证明:2ccosA-2acosC=b;
(Ⅱ)若tanA=$\frac{1}{3}$,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.测量马口鱼性成熟时重量,从大量马口鱼中随机抽取100尾作为样本,测出它们的重量(单位:克),重量分组区间为(5,15],(15,25],(25,35],(35,45],由此得到重量样本的频率分布直方图,如图.
(1)求a的值;
(2)若重量在(25,35],(35,45]中采用分层抽样方法抽出8尾作为特别实验,那么在(35,45]中需取出几尾?
(3)从大量马口鱼中机抽取3尾,其中重量在(5,15]内的尾数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案