精英家教网 > 高中数学 > 题目详情
9.若集合A={x|2x+1>0},B={x|(x-1)2≤4},则A∩B=(-$\frac{1}{2}$,3].

分析 求出集合的等价条件,利用集合的基本运算进行求解即可.

解答 解:A={x|2x+1>0}={x|x>-$\frac{1}{2}$},
B={x|(x-1)2≤4}={x|-1≤x≤3},
则A∩B={x|-$\frac{1}{2}$<x≤3}=(-$\frac{1}{2}$,3];
故答案为:(-$\frac{1}{2}$,3]

点评 本题主要考查集合的基本运算,根据条件求出集合的等价条件是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.如图,四棱锥P-ABCD的底面是直角梯形,∠BAD=∠CDA=90°,侧面PAD⊥底面ABCD,AB=PD=1,PA=DC=2,AD=$\sqrt{3}$,点E是BC的中点.
(1)求证:AE⊥平面PBD;
(2)设F是棱PC上的点,$\overrightarrow{PF}$=λ$\overrightarrow{PC}$(0<λ<1),若二面角F-DE-A的正切值为-1,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知角θ的顶点为坐标原点O,始边为x轴的非负半轴,且满足sin$\frac{θ}{2}$=$-\frac{3}{5}$,cos$\frac{θ}{2}$=$\frac{4}{5}$,设B为角θ终边上任意一点,$\overrightarrow{OA}=(0,-1)$,则|$\overrightarrow{OA}-\overrightarrow{OB}$|的取值范围是(  )
A.[$\frac{7}{25},+∞)$B.[$\frac{1}{3}$,+∞)C.[$\frac{4}{5}$,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知等差数列{an}中,a1+a2=6,a6-a4=4,函数f(x)=ax(a>0且a≠1)的图象过点A(3,$\frac{1}{8}$),B(an,bn
(1)求数列{an}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线2ρcosθ=1与圆ρ=2cosθ相交的弦长为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知△ABC的三个顶点分别为A(3,1),B(-3,-2),C(a,b),且它的重心G关于点D(1,1)的对称点的坐标为(1,3.5),求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ax3+x2f′(1)+1,且f′(-1)=9.
(1)求曲线f(x)在x=1处的切线方程;
(2)若存在x∈(1,+∞)使得函数f(x)<m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=2sin$({x-\frac{α}{2}})cos({x-\frac{α}{2}})+2\sqrt{3}{cos^2}({x-\frac{α}{2}})-\sqrt{3}$,其图象过点$({\frac{π}{12},0})$,且α∈[0,π].
(I)求α的值及f(x)的最小正周期;
(Ⅱ)若$x∈[{0,\frac{π}{2}}]$,求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A,B,C的对边分别为a,b,c,向量$\overrightarrow{m}$=(1-sin$\frac{C}{2}$,-1),$\overrightarrow{n}$=(1,sinC+cosC),且$\overrightarrow{m}$⊥$\overrightarrow{n}$
(1)求sinC的值;
(2)若a2+b2=4(a+b)-8,求边c的长度.

查看答案和解析>>

同步练习册答案