精英家教网 > 高中数学 > 题目详情
2.一个几何体的三视图如图所示,则其体积为(  )
A.$\frac{4}{3}$(π+1)B.$\frac{2}{3}$(π+1)C.$\frac{4}{3}$(π+$\frac{1}{2}$)D.$\frac{2}{3}$(π+$\frac{1}{2}$)

分析 由三视图可知,该几何体为组合体,上部为半球,半径为1;下部为正四棱锥,底面正方形的边长为$\sqrt{2}$,高为1;从而求体积.

解答 解:由三视图可知,
该几何体为组合体,上部为半球,半径为1;
下部为正四棱锥,底面正方形的边长为$\sqrt{2}$,高为1;
故其体积V=$\frac{1}{2}$×$\frac{4}{3}$×π×13+$\frac{1}{3}$×$(\sqrt{2})^{2}$×1=$\frac{2}{3}$(π+1);
故选B.

点评 本题考查了学生的空间想象力及计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.若复数z满足(3-4i)z=|4+3i|,则z的虚部为(  )
A.$\frac{4}{5}$B.-$\frac{4}{5}$iC.$\frac{4}{5}$iD.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)是定义在R上的偶函数,且在区间[0,+∞)上是减函数,若$f({ln\frac{n}{m}})-f(1)>0$,则$\frac{{{m^2}+{n^2}}}{mn}$的取值范围是(  )
A.[2,+∞)B.[2,e)C.$({e+\frac{1}{e},+∞})$D.$[{2,e+\frac{1}{e}})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.i为虚数单位,(1+i)$\overline{z}$=(1-i)2,则|z|=(  )
A.1B.2C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某项比赛规则是:先进行个人赛,每支参赛队的成绩前三名队员再代表本队进行团体赛,团体赛是在两队名次相同队员之间进行且三场比赛同时进行.根据以往比赛统计:两名队员中个人赛成绩高的队员在各场获胜的概率为$\frac{2}{3}$,负的概率为$\frac{1}{3}$,且各场比赛互不影响.已知甲乙队各5名队员,这10名队员的个人赛成绩如图所示:
(I)计算两队在个人赛中成绩的均值和方差;
(Ⅱ)求甲队在团体赛中至少2名队员获胜的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在△ABC中,A,B,C所对边分别为a,b,c.2c2-2a2=b2
(Ⅰ)证明:2ccosA-2acosC=b;
(Ⅱ)若tanA=$\frac{1}{3}$,求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知复数z的实部为-2,虚部为1,则$\overline{z}$的模等于$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.某校有A,B两个学生食堂,若a,b,c三名学生各自随机选择其中的一个食堂用餐,则三人不在同一个食堂用餐的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若正方形ABCD的边长为3,$\overrightarrow{DE}$=2$\overrightarrow{EC}$,$\overrightarrow{BF}$=2$\overrightarrow{FC}$,则$\overrightarrow{BE}$•$\overrightarrow{DF}$=-6.

查看答案和解析>>

同步练习册答案