精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)对任意实数x∈R,f(x+2)=f(x)恒成立,且当x∈[-1,1]时,f(x)=2x+a,若点P(2017,8)是该函数图象上一点,则实数a的值为2.

分析 求出函数的周期,然后利用点的坐标满足函数的解析式,推出结果即可.

解答 解:函数f(x)对任意实数x∈R,f(x+2)=f(x)恒成立,可得函数的周期为:2,
f(2017)=f(2×1008+1)=f(1).且当x∈[-1,1]时,f(x)=2x+a
点P(2017,8)是该函数图象上一点,
可得21+a=8,解得a=2.
故答案为:2.

点评 本题考查抽象函数的应用,函数的解析式以及函数值的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设fn(x)是等比数列1,-x,x2,…,(-x)n的各项和,则f2016(2)等于(  )
A.$\frac{{{2^{2016}}+1}}{3}$B.$\frac{{{2^{2016}}-1}}{3}$C.$\frac{{{2^{2017}}+1}}{3}$D.$\frac{{{2^{2017}}-1}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.过双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1的左顶点A作斜率为1的直线l,若l与双曲线的两条渐近线分别相交于B,C,且2$\overrightarrow{AB}$=$\overrightarrow{BC}$,则此双曲线的离心率是(  )
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{3}$C.$\sqrt{5}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,四面体OABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,点M在OA上,且OM=2MA,N为BC的中点,$\overrightarrow{MN}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$+z$\overrightarrow{c}$,则x+y+z=$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若幂函数y=xa(a∈R)的图象经过点(4,2),则a的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在△ABC中,已知CA=1,CB=2,∠ACB=60°.
(1)求|$\overrightarrow{AB}$|;
(2)已知点D是AB上一点,满足$\overrightarrow{AD}$=λ$\overrightarrow{AB}$,点E是边CB上一点,满足$\overrightarrow{BE}$=λ$\overrightarrow{BC}$.
①当λ=$\frac{1}{2}$时,求$\overrightarrow{AE}$•$\overrightarrow{CD}$;
②是否存在非零实数λ,使得$\overrightarrow{AE}$⊥$\overrightarrow{CD}$?若存在,求出的λ值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知抛物线C1:y2=8x的焦点F到双曲线C2:$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1,({a>0,b>0})$的渐近线的距离为$\frac{{4\sqrt{5}}}{5}$,P是抛物线C1的一动点,P到双曲线C2的上焦点F1(0,c)的距离与到直线x+2=0的距离之和的最小值为3,则该双曲线的方程为(  )
A.$\frac{y^2}{2}-\frac{x^2}{3}=1$B.${y^2}-\frac{x^2}{4}=1$C.$\frac{y^2}{4}-{x^2}=1$D.$\frac{y^2}{3}-\frac{x^2}{2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥$\frac{3}{5}$|CD|,则双曲线离心率的取值范围为[$\frac{5}{4}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,在正方体ABCD-A1B1C1D1中,点M,N分别是B1C1,CC1的中点,则直线A1M与DN的位置关系是相交.(填“平行”、“相交”或“异面”)

查看答案和解析>>

同步练习册答案