精英家教网 > 高中数学 > 题目详情
18.已知数列{an},a1=2,an=an-1+3,求{an}通项公式.

分析 易得数列为等差数列,由首项和公差可得通项公式.

解答 解:数列{an}中a1=2,an=an-1+3,
∴an-an-1=3,即数列{an}为等差数列,
∴{an}的通项公式为an=2+3(n-1)=3n-1

点评 本题考查等差数列的通项公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知cosα=$\frac{1}{7}$,sin(α+β)=$\frac{5\sqrt{3}}{14}$,0<α<$\frac{π}{2}$,0<β<$\frac{π}{2}$,求角β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知a1=a2015=1,且|an+1|=|an+1|(n∈N*),则a1+a2+…+a2015=(  )
A.2015B.2016C.-1006D.-1007

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=$\sqrt{3}$sinωx+cos(ωx+$\frac{π}{3}$)+cos(ωx+$\frac{π}{3}$)-1(ω>0,x∈R),且函数f(x)的最小正周期为π,求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=2x-4sinx,x∈[-$\frac{π}{2}$,$\frac{π}{2}$]的图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知F2、F1是双曲线$\frac{{y}^{2}}{{a}^{2}}-\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点,点F2关于渐近线的对称点恰好落在以F1为圆心,|OF1|为半径的圆上,则双曲线的离心率为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在极坐标系中,曲线C:ρ=2sinθ上的两点A,B对应的极角分别为$\frac{2π}{3},\frac{π}{3}$,则弦长|AB|等于(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知等差数列{an}的前9项的和为27,则${2^{{a_2}+{a_8}}}$=(  )
A.16B.2C.6 4D.128

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.将函数y=cosx的图象向右平移$\frac{π}{6}$个单位长度,再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是(  )
A.$y=cos(\frac{1}{2}x-\frac{π}{6})$B.$y=cos(\frac{1}{2}x-\frac{π}{3})$C.$y=cos(2x-\frac{π}{6})$D.$y=cos(2x-\frac{π}{3})$

查看答案和解析>>

同步练习册答案