精英家教网 > 高中数学 > 题目详情
8.将函数y=cosx的图象向右平移$\frac{π}{6}$个单位长度,再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是(  )
A.$y=cos(\frac{1}{2}x-\frac{π}{6})$B.$y=cos(\frac{1}{2}x-\frac{π}{3})$C.$y=cos(2x-\frac{π}{6})$D.$y=cos(2x-\frac{π}{3})$

分析 由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.

解答 解:将函数y=cosx的图象向右平移$\frac{π}{6}$个单位长度,可得y=cos(x-$\frac{π}{6}$)的图象;
再把所得图象上各点的横坐标伸长到原来的2倍(纵坐标不变),可得图象的函数解析式为y=cos($\frac{1}{2}$x-$\frac{π}{6}$),
故选:A.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知数列{an},a1=2,an=an-1+3,求{an}通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.实数x,y满足$\left\{\begin{array}{l}{x+2y-3≤0}\\{x+3y-3≥0}\\{y≤1}\end{array}\right.$,则z=x-y的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一条渐近线方程是$y=\sqrt{3}x$,它的一个焦点坐标为(2,0),则双曲线的方程为(  )
A.$\frac{x^2}{2}-\frac{y^2}{6}=1$B.$\frac{x^2}{6}-\frac{y^2}{2}=1$C.${x^2}-\frac{y^2}{3}=1$D.$\frac{x^2}{3}-{y^2}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=cos2$\frac{ωx}{2}$+$\sqrt{3}$sin$\frac{ωx}{2}$cos$\frac{ωx}{2}$-$\frac{1}{2}$(ω>0)的最小正周期为π.
(Ⅰ)求ω的值及函数f(x)的最大值和最小值;
(Ⅱ)求函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.某中学共有女生2000人,为了了解学生体质健康状况,随机抽取100名女生进行体质监测,将她们的体重(单位:kg)数据加以统计,得到如图所示的频率分布直方图,则直方图中x的值为0.024;试估计该校体重在[55,70)的女生有1000人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知a,b,c∈R,那么下列命题中正确的是(  )
A.若a<b,则ac2<bc2B.若a>b>0,c<0,则$\frac{c}{a}<\frac{c}{b}$
C.若a>b,则(a+c)2>(b+c)2D.若ab>0,则$\frac{a}{b}+\frac{b}{a}≥2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数a>1,0<b<1,则函数f(x)=ax+x-b的零点所在的区间是(  )
A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若曲线f(x)存在垂直于y轴的切线,且f′(x)=2x2+3-2a,求实数a的取值范围.

查看答案和解析>>

同步练习册答案