分析 先利用倍角公式及两角和的正弦公式将函数f(x)化成标准形式,然后利用周期公式求出ω的值,根据正弦函数的最值求出函数f(x)的最大值和最小值;根据正弦函数的单调区间求出函数f(x)的单调区间.
解答 解:(Ⅰ)f(x)=cos2$\frac{ωx}{2}$+$\sqrt{3}$sin$\frac{ωx}{2}cos\frac{ωx}{2}$-$\frac{1}{2}$
=$\frac{1+cosωx}{2}+\frac{\sqrt{3}}{2}sinωx-\frac{1}{2}$
=$\frac{\sqrt{3}}{2}sinωx+\frac{1}{2}cosωx$=sin($ωx+\frac{π}{6}$).
因为T=$\frac{2π}{|ω|}=π$,ω>0,所以ω=2.
因为f(x)=sin(2x+$\frac{π}{6}$),x∈R,
所以$-1≤sin(2x+\frac{π}{6})≤1$.
所以函数f(x)的最大值为1,最小值为-1.
(Ⅱ)令$2kπ-\frac{π}{2}$$≤2x+\frac{π}{6}≤2kπ+\frac{π}{2}$,k∈Z,
得2k$π-\frac{2π}{3}≤2x≤2kπ+\frac{π}{3}$,k∈Z,
所以$kπ-\frac{π}{3}≤x≤kπ+\frac{π}{6}$,k∈Z.
所以函数f(x)的单调递增区间为[$kπ-\frac{π}{3},kπ+\frac{π}{6}]$,k∈Z.
点评 本题考查了三解函数式的化简及三角函数的图象与性质,解决这类问题的关键是把三角函数式利用三角公式化成标准形式.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 满意 | 一般 | 不满意 | |
| A区域 | 50% | 25% | 25% |
| B区域 | 80% | 0 | 20% |
| C区域 | 50% | 50% | 0 |
| D区域 | 40% | 20% | 40% |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 最大值是$4\sqrt{2}$,最小值是4 | B. | 最大值是8,最小值是4 | ||
| C. | 最大值是$4\sqrt{2}$,最小值是2 | D. | 最大值是8,最小值是2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=cos(\frac{1}{2}x-\frac{π}{6})$ | B. | $y=cos(\frac{1}{2}x-\frac{π}{3})$ | C. | $y=cos(2x-\frac{π}{6})$ | D. | $y=cos(2x-\frac{π}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com