分析 设P(x,x+$\frac{4}{x}$)(x>0),可得|PA|、|PB|,由O、A、P、B四点共圆,可得∠APB=$\frac{3π}{4}$,由数量积定义可求.
解答 解:设P(x,x+$\frac{4}{x}$)(x>0),则点P到直线y=x和y轴的距离分别为:
|PA|=$\frac{|\begin{array}{l}{x-(x+\frac{4}{x})}\end{array}|}{\sqrt{{1}^{2}+(-1)^{2}}}$=$\frac{2\sqrt{2}}{x}$,|PB|=x.
∵O、A、P、B四点共圆,所以∠APB=π-∠AOB=$\frac{3π}{4}$,
∴$\overrightarrow{PA}•\overrightarrow{PB}$=$\frac{2\sqrt{2}}{x}$•x•cos$\frac{3π}{4}$=-2,
故答案为:-2.
点评 本题考查平面向量数量积的运算,涉及点到直线的距离公式和四点共圆的性质,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-$\frac{5}{2}$,$\frac{5}{2}$] | B. | (-∞,-$\frac{5}{2}$]∪[$\frac{5}{2}$,+∞) | C. | [-4,6] | D. | (-∞,-4]∪[6,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com