精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\left\{\begin{array}{l}{|lnx|,x>0}\\{{x}^{2}+4x+1,x≤0}\end{array}\right.$,若关于x的方程f2(x)-bf(x)+c=0(b,c∈R)有8个不同的实数根,则由点(b,c)确定的平面区域的面积为(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

分析 题中原方程f2(x)-bf(x)+c=0有8个不同实数解,即要求对应于f(x)=某个常数K,有2个不同的K,再根据函数对应法则,每一个常数可以找到4个x与之对应,就出现了8个不同实数解,故先根据题意作出f(x)的简图,由图可知,只有满足条件的K在开区间(0,1)时符合题意.再根据一元二次方程根的分布理论可以得出答案.

解答 解:根据题意作出f(x)的简图:

由图象可得当f(x)∈(0,1]时,有四个不同的x与f(x)对应.再结合题中“方程f2(x)-bf(x)+c=0有8个不同实数解”,
可以分解为形如关于k的方程k2-bk+c=0有两个不同的实数根K1、K2,且K1和K2均为大于0且小于等于1的实数.
列式如下:$\left\{\begin{array}{l}{{b}^{2}-4c>0}\\{0<\frac{b}{2}<1}\\{{0}^{2}-b×0+c>0}\\{{1}^{2}-b+c≥0}\end{array}\right.$,化简得$\left\{\begin{array}{l}{c<\frac{{b}^{2}}{4}}\\{1-b+c≥0}\\{c>0}\\{0<b<2}\end{array}\right.$,
此不等式组表示的区域如图:

则图中阴影部分的面积即为答案,由定积分的知识得
S=${∫}_{0}^{2}(\frac{1}{4}{b}^{2})db$-$\frac{1}{2}$×1×1=$\frac{1}{6}$
故选:A

点评 本题考查了函数的图象与一元二次方程根的分布的知识,同时考查定积分等知识,较为综合;采用数形结合的方法解决,使本题变得易于理解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.设点P是函数y=x+$\frac{4}{x}$(x>0)的图象上任意一点,过点P分别向直线y=x和y轴作垂线,垂足分别为A,B,则$\overrightarrow{PA}•\overrightarrow{PB}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C的对边分别为a,b,c,已知$b=2\sqrt{5}$,$B=\frac{π}{4}$,$cosC=\frac{{2\sqrt{5}}}{5}$.
(Ⅰ)求c的值;
(Ⅱ)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在单调递增的等差数列{an}中,若a3=1,a2a4=$\frac{3}{4}$,则a1=(  )
A.-1B.0C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知数列{an}的前n项和为Sn,a1=-1,Sn=2an+n(n∈N*),则an=1-2n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.曲线y=$\frac{1-2x}{{x}^{2}}$在点(-1,3)处的切线方程为(  )
A.y=4x-7B.y=4x+7C.y=-4x-1D.y=-4x+3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左右焦点,上下顶点依次为F1,F2,B1,B2,若四边形F1B1F2B2的面积为8,且椭圆的离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)已知点M,N在椭圆C上,若M,F2,N三点共线,且$\overrightarrow{{F}_{1}{F}_{2}}$=$\frac{1}{3}$$\overrightarrow{{F}_{1}M}$+λ$\overrightarrow{{F}_{1}N}$(λ∈R),求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.P是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{a}^{2}}$=1(a>b>0)上一点,F是C上的右焦点,PF⊥x轴,A,B分别是椭圆C上两个顶点,且AB∥OP,则C的离心率为$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)是定义在(-∞,+∞)上的奇函数,f(x+$\frac{3}{2}$)=$\frac{1}{f(x)}$,当0≤x≤1时有f(x)=2x,则f(8.5)=-1.

查看答案和解析>>

同步练习册答案